
Carlos Andrés Peniche Covas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408217/publications.pdf Version: 2024-02-01

Carlos Andrés Peniche

#	Article	IF	CITATIONS
1	Polyphosphazene-Based Nanocarriers for the Release of Camptothecin and Epirubicin. Pharmaceutics, 2022, 14, 169.	2.0	8
2	Chitosan Hydrogels Based on the Diels–Alder Click Reaction: Rheological and Kinetic Study. Polymers, 2022, 14, 1202.	2.0	13
3	Self-Assembled Silk Fibroin-Based Aggregates for Delivery of Camptothecin. Polymers, 2021, 13, 3804.	2.0	2
4	Synthesis of regioselective chitosan copolymers with β-cyclodextrin and poly(N-isopropyl acrylamide). Journal of Polymer Research, 2020, 27, 1.	1.2	4
5	Steroid-grafted silk fibroin conjugates for drug and agrochemical delivery. European Polymer Journal, 2019, 119, 169-175.	2.6	6
6	Dexamethasone-Loaded Chitosan Beads Coated with a pH-Dependent Interpolymer Complex for Colon-Specific Drug Delivery. International Journal of Polymer Science, 2019, 2019, 1-9.	1.2	9
7	Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair. Biomimetics, 2019, 4, 19.	1.5	72
8	Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1585-1594.	2.1	13
9	Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drugs. European Polymer Journal, 2018, 99, 384-393.	2.6	27
10	Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers, 2018, 10, 235.	2.0	207
11	Thermal properties, nanoscopic structure and swelling behavior of chitosan/(ureasil–polyethylene) Tj ETQq1 1 (0.784314 2.0	rgBT /Overlo
12	Chitin Preparation by Demineralizing Deproteinized Lobster Shells with CO ₂ and a Cationite. Journal of Renewable Materials, 2017, 5, 30-37.	1.1	4
13	Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei) Tj ETQq1 :	1 0.78431 2.2	4 rgBT /Over 238
14	Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules, 2017, 22, 1980.	1.7	43
15	Kinetics of the Demineralization Reaction of Deproteinized Lobster Shells Using CO2. Journal of Renewable Materials, 2015, 3, 73-80.	1.1	1
16	Synthesis and characterization of pH and temperature responsive poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	0 142 Td (m
17	Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydrate Polymers, 2015, 131, 1-8.	5.1	24

18Chitosan/(ureasilâ€"PEO hybrid) blend for drug delivery. Journal of Sol-Gel Science and Technology,
2014, 72, 233-238.1.119

#	Article	IF	CITATIONS
19	Synthesis and characterization of novel <scp>pH</scp> â€sensitive chitosanâ€poly(acrylamideâ€ <i>co</i> â€itaconic acid) hydrogels. Polymer International, 2014, 63, 1715-1723.	1.6	19
20	Thermosensitive Macroporous Cryogels Functionalized With Bioactive Chitosan/ <scp>B</scp> emiparin Nanoparticles. Macromolecular Bioscience, 2013, 13, 1556-1567.	2.1	18
21	Preparation, characterization, and in vitro evaluation of nanostructured chitosan/apatite and chitosan/Si-doped apatite composites. Journal of Materials Science, 2013, 48, 841-849.	1.7	6
22	Extraction of PLGA-Microencapsulated Proteins Using a Two-Immiscible Liquid Phases System Containing Surfactants. Pharmaceutical Research, 2013, 30, 606-615.	1.7	8
23	Novel Self-Assembled Nanoparticles of Testosterone-Modified Glycol Chitosan and Fructose Chitosan for Controlled Release. Journal of Biomaterials and Tissue Engineering, 2013, 3, 164-172.	0.0	3
24	Microencapsulation of Alpha Interferons in Biodegradable Microspheres. Journal of Interferon and Cytokine Research, 2012, 32, 299-311.	0.5	9
25	Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydrate Polymers, 2011, 86, 1336-1343.	5.1	22
26	Chitosan nanoparticles: a contribution to nanomedicine. Polymer International, 2011, 60, 883-889.	1.6	93
27	Highly crystalline chitosan produced by multi-steps acid hydrolysis in the solid-state. Carbohydrate Polymers, 2011, 83, 1730-1739.	5.1	42
28	Novel drug delivery systems: Chitosan conjugates covalently attached to steroids with potential anticancer and agrochemical activity. Carbohydrate Polymers, 2011, 84, 858-864.	5.1	25
29	Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomaterialia, 2010, 6, 466-476.	4.1	36
30	Kinetics Study of the Solid-State Acid Hydrolysis of Chitosan: Evolution of the Crystallinity and Macromolecular Structure. Biomacromolecules, 2010, 11, 1376-1386.	2.6	86
31	Un método reproducible para obtener peg biramificado monofuncional de alta pureza. Quimica Nova, 2009, 32, 1426-1431.	0.3	2
32	Effects of different parameters on the characteristics of chitosan–poly(acrylic acid) nanoparticles obtained by the method of coacervation. Journal of Applied Polymer Science, 2009, 111, 2362-2371.	1.3	17
33	Thermoresponsive Behavior of Chitosan- <i>g</i> - <i>N</i> -isopropylacrylamide Copolymer Solutions. Biomacromolecules, 2009, 10, 1633-1641.	2.6	76
34	Ferrocene Branched Chitosan for the Construction of a Reagentless Amperometric Hydrogen Peroxide Biosensor. Macromolecular Bioscience, 2007, 7, 435-439.	2.1	47
35	Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition. Polymer Bulletin, 2007, 58, 225-234.	1.7	41
36	Cell supports of chitosan/hyaluronic acid and chondroitin sulphate systems. Morphology and biological behaviour. Journal of Materials Science: Materials in Medicine, 2007, 18, 1719-1726.	1.7	37

Carlos Andrés Peniche

#	Article	IF	CITATIONS
37	Preparation and characterization of superparamagnetic chitosan microspheres: Application as a support for the immobilization of tyrosinase. Journal of Applied Polymer Science, 2005, 98, 651-657.	1.3	61
38	Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polymer Bulletin, 2005, 55, 367-375.	1.7	102
39	Passive adsorption of human antirrabic immunoglobulin onto a polystyrene surface. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 435-448.	1.9	7
40	Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules. Food Hydrocolloids, 2004, 18, 865-871.	5.6	64
41	Study of the interpolyelectrolyte reaction between chitosan and alginate: influence of alginate composition and chitosan molecular weight. International Journal of Biological Macromolecules, 2004, 34, 127-133.	3.6	66
42	Tramadol Release from a Delivery System Based on Alginate-Chitosan Microcapsules. Macromolecular Bioscience, 2003, 3, 546-551.	2.1	36
43	Chitosan: An Attractive Biocompatible Polymer for Microencapsulation. Macromolecular Bioscience, 2003, 3, 511-520.	2.1	223
44	Diffusion Through Membranes of the Polyelectrolyte Complex of Chitosan and Alginate. Macromolecular Bioscience, 2003, 3, 535-539.	2.1	35
45	Drug Delivery Systems Based on Porous Chitosan/Polyacrylic acid Microspheres. Macromolecular Bioscience, 2003, 3, 540-545.	2.1	44
46	Chitosan based polyelectrolyte complexes. Macromolecular Symposia, 2001, 168, 103-116.	0.4	48
47	Chitosan-based hydrogels: synthesis and characterization. Journal of Materials Science: Materials in Medicine, 2001, 12, 861-864.	1.7	66
48	Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid. Polymer, 2000, 41, 2373-2378.	1.8	64
49	Chitin and chitosan. Developments in Food Science, 2000, 41, 265-308.	0.0	21
50	Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation. Biomaterials, 1999, 20, 1869-1878.	5.7	261
51	Photoinitiated copolymerisation of furfuryl methacrylate and N,N-dimethyl acrylamide. Polymer, 1998, 39, 917-921.	1.8	5
52	Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: preparation, characterization and modification by thermal treatment. Polymer, 1998, 39, 6549-6554.	1.8	78
53	Polymeric Hydrophilic Hydrogels with Flexible Hydrophobic Chains. Control of the Hydration and Interactions with Water Molecules. Macromolecules, 1997, 30, 8440-8446.	2.2	84
54	Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers. Polymer, 1997, 38, 5977-5982.	1.8	111

#	Article	IF	CITATIONS
55	Photoinitiated homopolymerization and copolymerization of furfuryl methacrylate andN-vinylpyrrolidone. Journal of Polymer Science Part A, 1996, 34, 1753-1761.	2.5	14
56	Activity of the furfuryl ring in the free radical polymerization of acrylic monomers. Journal of Polymer Science Part A, 1996, 34, 2759-2766.	2.5	21
57	Sorption and desorption of water vapour by membranes of the polyelectrolyte complex of chitosan and carboxymethyl cellulose. Polymer International, 1995, 38, 45-52.	1.6	26
58	Swelling bahavior of hydroxyethylemethacrylate hydrogels modified by copolymerization with furfuryl acrylate. Journal of Applied Polymer Science, 1994, 54, 959-968.	1.3	18
59	High conversion copolymerization of furfuryl methacrylate and N-vinyl-pyrrolidone. A kinetic approach to Skeist's treatment for free radical copolymerization in different reaction media. Polymer, 1994, 35, 2390-2396.	1.8	8
60	Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR. Journal of Applied Polymer Science, 1993, 50, 485-493.	1.3	104
61	Influence of chain microstructure on thermodegradative behavior of furfuryl methacrylate-N-vinylpyrrolidone random copolymers by thermogravimetry. Journal of Applied Polymer Science, 1993, 50, 2121-2127.	1.3	13
62	Preparation of a novel polyampholyte from chitosan and citric acid. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 735-740.	1.1	12
63	Biocompatible hydrogels of controlled hydrophobicity from copolymers of N-vinyl-2-pyrrolidone and furfuryl methacrylate. Biomaterials, 1993, 14, 1073-1079.	5.7	22
64	A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation and Stability, 1993, 39, 21-28.	2.7	152
65	Study of the thermal degradation of poly(furfuryl methacrylate) by thermogravimetry. Polymer Degradation and Stability, 1993, 40, 287-295.	2.7	43
66	Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polymer Bulletin, 1993, 31, 471-478.	1.7	24
67	Free radical copolymerization of furfuryl acrylate and 2-hydroxyethyl-methacrylate. Journal of Polymer Science Part A, 1993, 31, 625-631.	2.5	16
68	Soda Pulping of Bagasse: Delignification Phases and Kinetics. Holzforschung, 1993, 47, 313-317.	0.9	10
69	Preparation and characterization of a chitosan-Fe(III) complex. Carbohydrate Polymers, 1992, 18, 221-224.	5.1	71
70	Free radical copolymerization of furfuryl methacrylate and N-vinylpyrrolidone. Polymer, 1992, 33, 4625-4629.	1.8	25
71	The adsorption of mercuric ions by chitosan. Journal of Applied Polymer Science, 1992, 46, 1147-1150.	1.3	153
72	Characterization of chitosan by pyrolysis-mass spectrometry, thermal analysis and differential scanning calorimetry. Thermochimica Acta, 1991, 176, 63-68.	1.2	91

#	Article	IF	CITATIONS
73	Study of the stoichiometric polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polymer Bulletin, 1990, 23, 307-313.	1.7	41
74	Characterization of silver-binding chitosan by thermal analysis and electron impact mass spectrometry. Carbohydrate Polymers, 1988, 9, 249-256.	5.1	14