Carlos Andrés Peniche Covas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408217/publications.pdf

Version: 2024-02-01

74 papers 3,571 citations

34 h-index 58 g-index

74 all docs

74 docs citations

74 times ranked 4615 citing authors

#	Article	IF	Citations
1	Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation. Biomaterials, 1999, 20, 1869-1878.	5.7	261
2	Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei) Tj ETQq0	0 0 rgBT /	Overlock 10 T
3	Chitosan: An Attractive Biocompatible Polymer for Microencapsulation. Macromolecular Bioscience, 2003, 3, 511-520.	2.1	223
4	Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers, 2018, 10, 235.	2.0	207
5	The adsorption of mercuric ions by chitosan. Journal of Applied Polymer Science, 1992, 46, 1147-1150.	1.3	153
6	A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation and Stability, 1993, 39, 21-28.	2.7	152
7	Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers. Polymer, 1997, 38, 5977-5982.	1.8	111
8	Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR. Journal of Applied Polymer Science, 1993, 50, 485-493.	1.3	104
9	Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polymer Bulletin, 2005, 55, 367-375.	1.7	102
10	Chitosan nanoparticles: a contribution to nanomedicine. Polymer International, 2011, 60, 883-889.	1.6	93
11	Characterization of chitosan by pyrolysis-mass spectrometry, thermal analysis and differential scanning calorimetry. Thermochimica Acta, 1991, 176, 63-68.	1.2	91
12	Kinetics Study of the Solid-State Acid Hydrolysis of Chitosan: Evolution of the Crystallinity and Macromolecular Structure. Biomacromolecules, 2010, 11, 1376-1386.	2.6	86
13	Polymeric Hydrophilic Hydrogels with Flexible Hydrophobic Chains. Control of the Hydration and Interactions with Water Molecules. Macromolecules, 1997, 30, 8440-8446.	2.2	84
14	Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: preparation, characterization and modification by thermal treatment. Polymer, 1998, 39, 6549-6554.	1.8	78
15	Thermoresponsive Behavior of Chitosan- <i>g</i> Nli>-isopropylacrylamide Copolymer Solutions. Biomacromolecules, 2009, 10, 1633-1641.	2.6	76
16	Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair. Biomimetics, 2019, 4, 19.	1.5	72
17	Preparation and characterization of a chitosan-Fe(III) complex. Carbohydrate Polymers, 1992, 18, 221-224.	5.1	71
18	Chitosan-based hydrogels: synthesis and characterization. Journal of Materials Science: Materials in Medicine, 2001, 12, 861-864.	1.7	66

#	Article	IF	Citations
19	Study of the interpolyelectrolyte reaction between chitosan and alginate: influence of alginate composition and chitosan molecular weight. International Journal of Biological Macromolecules, 2004, 34, 127-133.	3.6	66
20	Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid. Polymer, 2000, 41, 2373-2378.	1.8	64
21	Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules. Food Hydrocolloids, 2004, 18, 865-871.	5.6	64
22	Preparation and characterization of superparamagnetic chitosan microspheres: Application as a support for the immobilization of tyrosinase. Journal of Applied Polymer Science, 2005, 98, 651-657.	1.3	61
23	Chitosan based polyelectrolyte complexes. Macromolecular Symposia, 2001, 168, 103-116.	0.4	48
24	Ferrocene Branched Chitosan for the Construction of a Reagentless Amperometric Hydrogen Peroxide Biosensor. Macromolecular Bioscience, 2007, 7, 435-439.	2.1	47
25	Drug Delivery Systems Based on Porous Chitosan/Polyacrylic acid Microspheres. Macromolecular Bioscience, 2003, 3, 540-545.	2.1	44
26	Study of the thermal degradation of poly(furfuryl methacrylate) by thermogravimetry. Polymer Degradation and Stability, 1993, 40, 287-295.	2.7	43
27	Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules, 2017, 22, 1980.	1.7	43
28	Highly crystalline chitosan produced by multi-steps acid hydrolysis in the solid-state. Carbohydrate Polymers, 2011, 83, 1730-1739.	5.1	42
29	Study of the stoichiometric polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polymer Bulletin, 1990, 23, 307-313.	1.7	41
30	Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition. Polymer Bulletin, 2007, 58, 225-234.	1.7	41
31	Cell supports of chitosan/hyaluronic acid and chondroitin sulphate systems. Morphology and biological behaviour. Journal of Materials Science: Materials in Medicine, 2007, 18, 1719-1726.	1.7	37
32	Tramadol Release from a Delivery System Based on Alginate-Chitosan Microcapsules. Macromolecular Bioscience, 2003, 3, 546-551.	2.1	36
33	Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomaterialia, 2010, 6, 466-476.	4.1	36
34	Diffusion Through Membranes of the Polyelectrolyte Complex of Chitosan and Alginate. Macromolecular Bioscience, 2003, 3, 535-539.	2.1	35
35	Synthesis and characterization of pH and temperature responsive poly(2-hydroxyethyl) Tj ETQq1 1 0.784314 rgBT	Overlock 0.2	10 Tf 50 10
36	Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drugs. European Polymer Journal, 2018, 99, 384-393.	2.6	27

#	Article	IF	CITATIONS
37	Sorption and desorption of water vapour by membranes of the polyelectrolyte complex of chitosan and carboxymethyl cellulose. Polymer International, 1995, 38, 45-52.	1.6	26
38	Free radical copolymerization of furfuryl methacrylate and N-vinylpyrrolidone. Polymer, 1992, 33, 4625-4629.	1.8	25
39	Novel drug delivery systems: Chitosan conjugates covalently attached to steroids with potential anticancer and agrochemical activity. Carbohydrate Polymers, 2011, 84, 858-864.	5.1	25
40	Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polymer Bulletin, 1993, 31, 471-478.	1.7	24
41	Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydrate Polymers, 2015, 131, 1-8.	5.1	24
42	Biocompatible hydrogels of controlled hydrophobicity from copolymers of N-vinyl-2-pyrrolidone and furfuryl methacrylate. Biomaterials, 1993, 14, 1073-1079.	5.7	22
43	Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydrate Polymers, 2011, 86, 1336-1343.	5.1	22
44	Activity of the furfuryl ring in the free radical polymerization of acrylic monomers. Journal of Polymer Science Part A, 1996, 34, 2759-2766.	2.5	21
45	Chitin and chitosan. Developments in Food Science, 2000, 41, 265-308.	0.0	21
46	Chitosan/(ureasil–PEO hybrid) blend for drug delivery. Journal of Sol-Gel Science and Technology, 2014, 72, 233-238.	1.1	19
47	Synthesis and characterization of novel <scp>pH</scp> â€sensitive chitosanâ€poly(acrylamideâ€ <i>co</i> â€itaconic acid) hydrogels. Polymer International, 2014, 63, 1715-1723.	1.6	19
48	Swelling bahavior of hydroxyethylemethacrylate hydrogels modified by copolymerization with furfuryl acrylate. Journal of Applied Polymer Science, 1994, 54, 959-968.	1.3	18
49	Thermosensitive Macroporous Cryogels Functionalized With Bioactive Chitosan/ <scp>B</scp> emiparin Nanoparticles. Macromolecular Bioscience, 2013, 13, 1556-1567.	2.1	18
50	Effects of different parameters on the characteristics of chitosan–poly(acrylic acid) nanoparticles obtained by the method of coacervation. Journal of Applied Polymer Science, 2009, 111, 2362-2371.	1.3	17
51	Free radical copolymerization of furfuryl acrylate and 2-hydroxyethyl-methacrylate. Journal of Polymer Science Part A, 1993, 31, 625-631.	2.5	16
52	Characterization of silver-binding chitosan by thermal analysis and electron impact mass spectrometry. Carbohydrate Polymers, 1988, 9, 249-256.	5.1	14
53	Photoinitiated homopolymerization and copolymerization of furfuryl methacrylate and N-vinyl pyrrolidone. Journal of Polymer Science Part A, 1996, 34, 1753-1761.	2.5	14
54	Influence of chain microstructure on thermodegradative behavior of furfuryl methacrylate-N-vinylpyrrolidone random copolymers by thermogravimetry. Journal of Applied Polymer Science, 1993, 50, 2121-2127.	1.3	13

#	Article	IF	CITATIONS
55	Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1585-1594.	2.1	13
56	Chitosan Hydrogels Based on the Diels–Alder Click Reaction: Rheological and Kinetic Study. Polymers, 2022, 14, 1202.	2.0	13
57	Preparation of a novel polyampholyte from chitosan and citric acid. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 735-740.	1.1	12
58	Soda Pulping of Bagasse: Delignification Phases and Kinetics. Holzforschung, 1993, 47, 313-317.	0.9	10
59	Microencapsulation of Alpha Interferons in Biodegradable Microspheres. Journal of Interferon and Cytokine Research, 2012, 32, 299-311.	0.5	9
60	Thermal properties, nanoscopic structure and swelling behavior of chitosan/(ureasil–polyethylene) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
61	Dexamethasone-Loaded Chitosan Beads Coated with a pH-Dependent Interpolymer Complex for Colon-Specific Drug Delivery. International Journal of Polymer Science, 2019, 2019, 1-9.	1.2	9
62	High conversion copolymerization of furfuryl methacrylate and N-vinyl-pyrrolidone. A kinetic approach to Skeist's treatment for free radical copolymerization in different reaction media. Polymer, 1994, 35, 2390-2396.	1.8	8
63	Extraction of PLGA-Microencapsulated Proteins Using a Two-Immiscible Liquid Phases System Containing Surfactants. Pharmaceutical Research, 2013, 30, 606-615.	1.7	8
64	Polyphosphazene-Based Nanocarriers for the Release of Camptothecin and Epirubicin. Pharmaceutics, 2022, 14, 169.	2.0	8
65	Passive adsorption of human antirrabic immunoglobulin onto a polystyrene surface. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 435-448.	1.9	7
66	Preparation, characterization, and in vitro evaluation of nanostructured chitosan/apatite and chitosan/Si-doped apatite composites. Journal of Materials Science, 2013, 48, 841-849.	1.7	6
67	Steroid-grafted silk fibroin conjugates for drug and agrochemical delivery. European Polymer Journal, 2019, 119, 169-175.	2.6	6
68	Photoinitiated copolymerisation of furfuryl methacrylate and N,N-dimethyl acrylamide. Polymer, 1998, 39, 917-921.	1.8	5
69	Chitin Preparation by Demineralizing Deproteinized Lobster Shells with CO ₂ and a Cationite. Journal of Renewable Materials, 2017, 5, 30-37.	1.1	4
70	Synthesis of regioselective chitosan copolymers with \hat{l}^2 -cyclodextrin and poly(N-isopropyl acrylamide). Journal of Polymer Research, 2020, 27, 1.	1.2	4
71	Novel Self-Assembled Nanoparticles of Testosterone-Modified Glycol Chitosan and Fructose Chitosan for Controlled Release. Journal of Biomaterials and Tissue Engineering, 2013, 3, 164-172.	0.0	3
72	Un método reproducible para obtener peg biramificado monofuncional de alta pureza. Quimica Nova, 2009, 32, 1426-1431.	0.3	2

#	Article	IF	CITATIONS
73	Self-Assembled Silk Fibroin-Based Aggregates for Delivery of Camptothecin. Polymers, 2021, 13, 3804.	2.0	2
74	Kinetics of the Demineralization Reaction of Deproteinized Lobster Shells Using CO2. Journal of Renewable Materials, 2015, 3, 73-80.	1.1	1