
Luis A Trujillo-Cayado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of food-grade Pickering emulsions stabilized by a biological macromolecule (xanthan) Tj ETQq1 1	0.784314	rgBT/Overlo
2	Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene. Colloids and Surfaces B: Biointerfaces, 2015, 128, 127-131.	5.0	46
3	Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering. Colloids and Surfaces B: Biointerfaces, 2017, 159, 405-411.	5.0	43
4	Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides. Colloids and Surfaces B: Biointerfaces, 2016, 141, 53-58.	5.0	41
5	Development of eco-friendly emulsions produced by microfluidization technique. Journal of Industrial and Engineering Chemistry, 2016, 36, 90-95.	5.8	40
6	Enhancing rosemary oil-in-water microfluidized nanoemulsion properties through formulation optimization by response surface methodology. LWT - Food Science and Technology, 2018, 97, 370-375.	5.2	34
7	Adsorption at the biocompatible α-pinene–water interface and emulsifying properties of two eco-friendly surfactants. Colloids and Surfaces B: Biointerfaces, 2014, 122, 623-629.	5.0	27
8	A Further Step in the Development of Oil-in-Water Emulsions Formulated with a Mixture of Green Solvents. Industrial & Engineering Chemistry Research, 2016, 55, 7259-7266.	3.7	27
9	Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. Journal of the Science of Food and Agriculture, 2020, 100, 1671-1677.	3.5	27
10	Physical Characterization of a Commercial Suspoemulsion as a Reference for the Development of Suspoemulsions. Chemical Engineering and Technology, 2013, 36, 1883-1890.	1.5	25
11	Equilibrium and surface rheology of two polyoxyethylene surfactants (CiEOj) differing in the number of oxyethylene groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 130-135.	4.7	24
12	Surface and foaming properties of polyoxyethylene glycerol ester surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 195-202.	4.7	22
13	Effect of emulsifier HLB and stabilizer addition on the physical stability of thyme essential oil emulsions. Journal of Dispersion Science and Technology, 2018, 39, 1627-1634.	2.4	22
14	Strategy for the development and characterization of environmental friendly emulsions by microfluidization technique. Journal of Cleaner Production, 2018, 178, 723-730.	9.3	22
15	Progress in the Formulation of Concentrated Ecological Emulsions for Agrochemical Application Based on Environmentally Friendly Ingredients. ACS Sustainable Chemistry and Engineering, 2017, 5, 4127-4132.	6.7	20
16	Encapsulation of β-carotene in emulgels-based delivery systems formulated with sweet fennel oil. LWT - Food Science and Technology, 2019, 100, 189-195.	5.2	18
17	Influence of primary homogenization step on microfluidized emulsions formulated with thyme oil and Appyclean 6548. Journal of Industrial and Engineering Chemistry, 2018, 66, 203-208.	5.8	15
18	Processing and Formulation Optimization of Mandarin Essential Oil-Loaded Emulsions Developed by Microfluidization. Materials, 2020, 13, 3486.	2.9	13

#	Article	IF	CITATIONS
19	Development of eco-friendly submicron emulsions stabilized by a bio-derived gum. Colloids and Surfaces B: Biointerfaces, 2014, 123, 797-802.	5.0	12
20	Effects of ethoxylated fatty acid alkanolamide concentration and processing on d-limonene emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 198-203.	4.7	12
21	Rheological properties and physical stability of ecological emulsions stabilized by a surfactant derived from cocoa oil and high pressure homogenization. Grasas Y Aceites, 2015, 66, e087.	0.9	12
22	Comparison of homogenization processes for the development of green O/W emulsions formulated with N,N-dimethyldecanamide. Journal of Industrial and Engineering Chemistry, 2017, 46, 54-61.	5.8	11
23	Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant. Colloids and Surfaces B: Biointerfaces, 2016, 145, 430-437.	5.0	10
24	Rheological and microstructural properties of sepiolite gels. Influence of the addition of ionic surfactants. Journal of Industrial and Engineering Chemistry, 2018, 59, 1-7.	5.8	10
25	Development and characterisation of a continuous phase based on a fumed silica and a green surfactant with emulsion applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 351-357.	4.7	10
26	Effectiveness of mobile devices as audience response systems in the chemistry laboratory classroom. Computer Applications in Engineering Education, 2019, 27, 572-579.	3.4	10
27	The Role of Processing Temperature in Flocculated Emulsions. Industrial & Engineering Chemistry Research, 2018, 57, 807-812.	3.7	9
28	Assessment of Fennel Oil Microfluidized Nanoemulsions Stabilization by Advanced Performance Xanthan Gum. Foods, 2021, 10, 693.	4.3	8
29	Relation between Droplet Size Distributions and Physical Stability for Zein Microfluidized Emulsions. Polymers, 2022, 14, 2195.	4.5	8
30	Development, rheological properties, and physical stability of <scp>d</scp> â€limoneneâ€inâ€water emulsions formulated with copolymers as emulsifiers. Journal of Applied Polymer Science, 2016, 133, .	2.6	7
31	Development of emulgels formulated with sweet fennel oil and rhamsan gum, a biological macromolecule produced by Sphingomonas. International Journal of Biological Macromolecules, 2019, 129, 326-332.	7.5	7
32	Production of more sustainable emulsions formulated with eco-friendly materials. Journal of Cleaner Production, 2020, 243, 118661.	9.3	7
33	Rheology, microstructural characterization and physical stability of W/α-PINENE/W emulsions formulated with copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 125-132.	4.7	3
34	Influence of the Homogenization Pressure on the Rheology of Biopolymer-Stabilized Emulsions Formulated with Thyme Oil. Fluids, 2019, 4, 29.	1.7	3
35	Physical stability of N,N-dimethyldecanamide/α-pinene-in-water emulsions as influenced by surfactant concentration. Colloids and Surfaces B: Biointerfaces, 2017, 149, 154-161.	5.0	2
36	Tackling slip effects in the nonlinear flow properties of gellan fluid gels. Journal of Applied Polymer Science, 2019, 136, 46900.	2.6	2

#	Article	IF	CITATIONS
37	Impact of Microfluidization on the Emulsifying Properties of Zein-Based Emulsions: Influence of Diutan Gum Concentration. Materials, 2021, 14, 3695.	2.9	2
38	Optimization of sonication parameters to obtain food emulsions stabilized by zein: formation of zein–diutan gum/zein–guar gum complexes. Journal of the Science of Food and Agriculture, 2022, 102, 2127-2134.	3.5	2
39	Production of food bioactive-loaded nanostructures by microfluidization. , 2019, , 341-390.		Ο