Mauricio A Retamal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDARâ€dependent transmission and shortâ€ŧerm fear memory in the basolateral amygdala. FASEB Journal, 2022, 36, e22134.	0.2	14
2	Role and Posttranslational Regulation of Cx46 Hemichannels and Gap Junction Channels in the Eye Lens. Frontiers in Physiology, 2022, 13, 864948.	1.3	5
3	Extracellular Cysteines Are Critical to Form Functional Cx46 Hemichannels. International Journal of Molecular Sciences, 2022, 23, 7252.	1.8	6
4	Connexins in melanoma: Potential role of Cx46 in its aggressiveness. Pigment Cell and Melanoma Research, 2021, 34, 853-868.	1.5	6
5	Over-activated hemichannels: A possible therapeutic target for human diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166232.	1.8	5
6	Connexin Hemichannel Activation by S-Nitrosoglutathione Synergizes Strongly with Photodynamic Therapy Potentiating Anti-Tumor Bystander Killing. Cancers, 2021, 13, 5062.	1.7	7
7	Connexin46 Expression Enhances Cancer Stem Cell and Epithelial-to-Mesenchymal Transition Characteristics of Human Breast Cancer MCF-7 Cells. International Journal of Molecular Sciences, 2021, 22, 12604.	1.8	13
8	Potential use of n-3 PUFAs to prevent oxidative stress-derived ototoxicity caused by platinum-based chemotherapy. Free Radical Biology and Medicine, 2020, 160, 263-276.	1.3	3
9	Role of ROS/RNS in Preeclampsia: Are Connexins the Missing Piece?. International Journal of Molecular Sciences, 2020, 21, 4698.	1.8	10
10	Connexin-46 Contained in Extracellular Vesicles Enhance Malignancy Features in Breast Cancer Cells. Biomolecules, 2020, 10, 676.	1.8	22
11	Contribution of Connexin Hemichannels to the Decreases in Cell Viability Induced by Linoleic Acid in the Human Lens Epithelial Cells (HLE-B3). Frontiers in Physiology, 2020, 10, 1574.	1.3	12
12	4-Hydroxynonenal induces Cx46 hemichannel inhibition through its carbonylation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158705.	1.2	15
13	Cardiac remodeling and arrhythmogenesis are ameliorated by administration of Cx43 mimetic peptide Gap27 in heart failure rats. Scientific Reports, 2020, 10, 6878.	1.6	22
14	Interferon-Î ³ and high glucose-induced opening of Cx43 hemichannels causes endothelial cell dysfunction and damage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118720.	1.9	17
15	Editorial: Physiology of Myelin Forming Cells, From Myelination to Neural Modulators. Frontiers in Cellular Neuroscience, 2019, 13, 475.	1.8	0
16	Cx46 hemichannel modulation by nitric oxide: Role of the fourth transmembrane helix cysteine and its possible involvement in cataract formation. Nitric Oxide - Biology and Chemistry, 2019, 86, 54-62.	1.2	10
17	Connexin and Pannexin-Based Channels in Oligodendrocytes: Implications in Brain Health and Disease. Frontiers in Cellular Neuroscience, 2019, 13, 3.	1.8	24
18	Redox-mediated regulation of connexin proteins; focus on nitric oxide. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 91-95.	1.4	24

MAURICIO A RETAMAL

#	Article	IF	CITATIONS
19	Synaptic Functions of Hemichannels and Pannexons: A Double-Edged Sword. Frontiers in Molecular Neuroscience, 2018, 11, 435.	1.4	42
20	Editorial: Modulation of Ion Channels and Ionic Pumps by Fatty Acids: Implications in Physiology and Pathology. Frontiers in Physiology, 2018, 9, 1625.	1.3	6
21	Topical Application of Connexin43 Hemichannel Blocker Reduces Carotid Body-Mediated Chemoreflex Drive in Rats. Advances in Experimental Medicine and Biology, 2018, 1071, 61-68.	0.8	1
22	Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS. Frontiers in Physiology, 2018, 9, 693.	1.3	2
23	Contribution of peripheral and central chemoreceptors to sympathoâ€excitation in heart failure. Journal of Physiology, 2017, 595, 43-51.	1.3	46
24	Regulation of Connexin-Based Channels by Fatty Acids. Frontiers in Physiology, 2017, 8, 11.	1.3	14
25	Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity?. Frontiers in Molecular Neuroscience, 2017, 10, 374.	1.4	25
26	Ion Channels in Inflammatory Processes: What Is Known and What Is Next?. Mediators of Inflammation, 2016, 2016, 1-1.	1.4	7
27	Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases. Frontiers in Integrative Neuroscience, 2016, 10, 26.	1.0	34
28	Extracellular Cysteine in Connexins: Role as Redox Sensors. Frontiers in Physiology, 2016, 7, 1.	1.3	247
29	Carbon Monoxide Modulates Connexin Function through a Lipid Peroxidation-Dependent Process: A Hypothesis. Frontiers in Physiology, 2016, 7, 259.	1.3	10
30	Regulation of Connexins Expression Levels by MicroRNAs, an Update. Frontiers in Physiology, 2016, 7, 558.	1.3	15
31	Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision. BMC Cell Biology, 2016, 17, 11.	3.0	118
32	Connexinopathies: a structural and functional glimpse. BMC Cell Biology, 2016, 17, 17.	3.0	42
33	Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins. Journal of Biological Chemistry, 2016, 291, 15740-15752.	1.6	13
34	Gap-junctional channel and hemichannel activity of two recently identified connexin 26 mutants associated with deafness. Pflugers Archiv European Journal of Physiology, 2016, 468, 909-918.	1.3	13
35	Carbon monoxide: A new player in the redox regulation of connexin hemichannels. IUBMB Life, 2015, 67, 428-437.	1.5	14
36	Diseases associated with leaky hemichannels. Frontiers in Cellular Neuroscience, 2015, 9, 267.	1.8	80

MAURICIO A RETAMAL

#	Article	IF	CITATIONS
37	Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Frontiers in Physiology, 2015, 6, 350.	1.3	15
38	Functional hemichannels formed by human connexin 26 expressed in bacteria. Bioscience Reports, 2015, 35, .	1.1	11
39	Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Frontiers in Cellular Neuroscience, 2014, 8, 123.	1.8	20
40	Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells. Frontiers in Cellular Neuroscience, 2014, 8, 265.	1.8	25
41	Carbon Monoxide (CO) Is a Novel Inhibitor of Connexin Hemichannels. Journal of Biological Chemistry, 2014, 289, 36150-36157.	1.6	27
42	Connexin and Pannexin hemichannels are regulated by redox potential. Frontiers in Physiology, 2014, 5, 80.	1.3	61
43	Petrosal ganglion: a more complex role than originally imagined. Frontiers in Physiology, 2014, 5, 474.	1.3	7
44	Hemichannels; from the molecule to the function. Frontiers in Physiology, 2014, 5, 411.	1.3	10
45	Linolenic and Linoleic Acid Induce the Opening of Connexin 43, 46 and 50 Hemichannel in Human Hela Cells. Biophysical Journal, 2014, 106, 751a.	0.2	Ο
46	Purified Functional Human Connexin 26 Hemichannels Expressed in E.ÂColi. Biophysical Journal, 2014, 106, 761a.	0.2	0
47	Opening of pannexin- and connexin-based channels increases the excitability of nodose ganglion sensory neurons. Frontiers in Cellular Neuroscience, 2014, 8, 158.	1.8	38
48	Linoleic acid induces opening of connexin26 hemichannels through a PI3K/Akt/Ca2+-dependent pathway. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1169-1179.	1.4	30
49	ls the Gain of Hemichannel Activity a Common Feature Shared by Cx26 Syndromic Deafness Mutants?. Biophysical Journal, 2013, 104, 492a-493a.	0.2	1
50	Gap junction channels and hemichannels in the CNS: Regulation by signaling molecules. Neuropharmacology, 2013, 75, 567-582.	2.0	78
51	Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: Gap junctions versus hemichannels. Neuropharmacology, 2013, 75, 491-505.	2.0	78
52	ATP Is Required and Advances Cytokine-Induced Gap Junction Formation in Microglia In Vitro. Mediators of Inflammation, 2013, 2013, 1-16.	1.4	40
53	Connexin in Lens Physiology and Cataract Formation. Journal of Clinical & Experimental Ophthalmology, 2013, 04, .	0.1	3
54	Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB Journal, 2012, 26, 3649-3657.	0.2	211

MAURICIO A RETAMAL

#	Article	IF	CITATIONS
55	Nitric oxide signaling in the retina: What have we learned in two decades?. Brain Research, 2012, 1430, 112-125.	1.1	61
56	Biphasic effect of linoleic acid on connexin 46 hemichannels. Pflugers Archiv European Journal of Physiology, 2011, 461, 635-643.	1.3	30
57	Cell membrane permeabilization via connexin hemichannels in living and dying cells. Experimental Cell Research, 2010, 316, 2377-2389.	1.2	168
58	FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22659-22664.	3.3	148
59	Intramolecular loop/tail interactions are essential for connexin 43â€hemichannel activity. FASEB Journal, 2010, 24, 4378-4395.	0.2	142
60	Voltage-dependent facilitation of Cx46 hemichannels. American Journal of Physiology - Cell Physiology, 2010, 298, C132-C139.	2.1	11
61	Modulation of Cx46 hemichannels by nitric oxide. American Journal of Physiology - Cell Physiology, 2009, 296, C1356-C1363.	2.1	66
62	Connexin Hemichannel Composition Determines the FGF-1–induced Membrane Permeability and Free [Ca ²⁺] _i Responses. Molecular Biology of the Cell, 2008, 19, 3501-3513.	0.9	91
63	Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8322-8327.	3.3	152
64	Cx43 Hemichannels and Gap Junction Channels in Astrocytes Are Regulated Oppositely by Proinflammatory Cytokines Released from Activated Microglia. Journal of Neuroscience, 2007, 27, 13781-13792.	1.7	423
65	Possible Involvement of Different Connexin43 Domains in Plasma Membrane Permeabilization Induced by Ischemia-Reperfusion. Journal of Membrane Biology, 2007, 218, 49-63.	1.0	51
66	S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: Induction by oxidant stress and reversal by reducing agents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4475-4480.	3.3	271
67	Connexin-based gap junction hemichannels: Gating mechanisms. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 215-224.	1.4	345
68	Dopamine inhibits ATP-induced responses in the cat petrosal ganglion in vitro. Brain Research, 2003, 966, 283-287.	1.1	19
69	Gap junction hemichannels in astrocytes of the CNS. Acta Physiologica Scandinavica, 2003, 179, 9-22.	2.3	126
70	Adenosine triphosphate-induced peripheral nerve discharges generated from the cat petrosal ganglion in vitro. Neuroscience Letters, 2000, 282, 185-188.	1.0	39