
Deborah A Ferrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8407625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testing Mitochondrial-Targeted Drugs in iPSC-RPE from Patients with Age-Related Macular Degeneration. Pharmaceuticals, 2022, 15, 62.	3.8	11
2	Quantification of mitophagy using mKeima-mito in cultured human primary retinal pigment epithelial cells. Experimental Eye Research, 2022, 217, 108981.	2.6	2
3	Human iPSC- and Primary-Retinal Pigment Epithelial Cells for Modeling Age-Related Macular Degeneration. Antioxidants, 2022, 11, 605.	5.1	6
4	Inflammasome Activation in Retinal Pigment Epithelium from Human Donors with Age-Related Macular Degeneration. Cells, 2022, 11, 2075.	4.1	4
5	Automating Human Induced Pluripotent Stem Cell Culture and Differentiation of iPSC-Derived Retinal Pigment Epithelium for Personalized Drug Testing. SLAS Technology, 2021, 26, 287-299.	1.9	15
6	Mitochondria: The Retina's Achilles' Heel in AMD. Advances in Experimental Medicine and Biology, 2021, 1256, 237-264.	1.6	9
7	Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants, 2021, 10, 661.	5.1	45
8	Impaired Mitochondrial Function in iPSC-Retinal Pigment Epithelium with the Complement Factor H Polymorphism for Age-Related Macular Degeneration. Cells, 2021, 10, 789.	4.1	28
9	No association between cataract surgery and mitochondrial DNA damage with age-related macular degeneration in human donor eyes. PLoS ONE, 2021, 16, e0258803.	2.5	0
10	Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends in Molecular Medicine, 2020, 26, 105-118.	6.7	86
11	Improving retinal mitochondrial function as a treatment for age-related macular degeneration. Redox Biology, 2020, 34, 101552.	9.0	34
12	Investigating AKT activation and autophagy in immunoproteasome-deficient retinal cells. PLoS ONE, 2020, 15, e0231212.	2.5	16
13	Family-based exome sequencing identifies rare coding variants in age-related macular degeneration. Human Molecular Genetics, 2020, 29, 2022-2034.	2.9	26
14	Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Progress in Retinal and Eye Research, 2020, 79, 100858.	15.5	239
15	Lipid-derived and other oxidative modifications of retinal proteins in a rat model of Smith-Lemli-Opitz syndrome. Experimental Eye Research, 2019, 178, 247-254.	2.6	9
16	N-Acetyl-L-cysteine Protects Human Retinal Pigment Epithelial Cells from Oxidative Damage: Implications for Age-Related Macular Degeneration. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	38
17	Increased serum proteins in non-exudative AMD retinas. Experimental Eye Research, 2019, 186, 107686.	2.6	13
18	Antimycin A-Induced Mitochondrial Damage Causes Human RPE Cell Death despite Activation of Autophagy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	33

DEBORAH A FERRINGTON

#	Article	IF	CITATIONS
19	EDITORIAL: Special issue on the role of lipid and protein oxidation in retinal degenerations. Experimental Eye Research, 2019, 181, 313-315.	2.6	2
20	Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nature Genetics, 2019, 51, 606-610.	21.4	201
21	Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biology, 2019, 20, 1-12.	9.0	117
22	Downhill exercise alters immunoproteasome content in mouse skeletal muscle. Cell Stress and Chaperones, 2018, 23, 507-517.	2.9	10
23	Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE. , 2018, 59, AMD41.		141
24	Molecular Mechanisms Underlying Age-Related Ocular Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-2.	4.0	5
25	Immunoproteasomes as a novel antiviral mechanism in rhinovirus-infected airways. Clinical Science, 2018, 132, 1711-1723.	4.3	10
26	Altered bioenergetics and enhanced resistance to oxidative stress in human retinal pigment epithelial cells from donors with age-related macular degeneration. Redox Biology, 2017, 13, 255-265.	9.0	129
27	Activating the <scp>AKT2</scp> –nuclear factorâ€ <scp>κB</scp> –lipocalinâ€2 axis elicits an inflammatory response in ageâ€related macular degeneration. Journal of Pathology, 2017, 241, 583-588.	4.5	55
28	Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE, 2017, 12, e0173575.	2.5	26
29	Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome. PLoS ONE, 2016, 11, e0166831.	2.5	11
30	Simultaneous determination of 8-oxo-2'-deoxyguanosine and 8-oxo-2'-deoxyadenosine in human retinal DNA by liquid chromatography nanoelectrospray-tandem mass spectrometry. Scientific Reports, 2016, 6, 22375.	3.3	26
31	Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration. Experimental Eye Research, 2016, 145, 269-277.	2.6	64
32	Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Progress in Retinal and Eye Research, 2016, 51, 69-89.	15.5	190
33	Lactoferrin Expression in Human and Murine Ocular Tissue. Current Eye Research, 2016, 41, 883-889.	1.5	13
34	Immunoproteasome Deficiency Protects in the Retina after Optic Nerve Crush. PLoS ONE, 2015, 10, e0126768.	2.5	14
35	Investigating Mitochondria as a Target for Treating Age-Related Macular Degeneration. Journal of Neuroscience, 2015, 35, 7304-7311.	3.6	196
36	Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice. Journal of Neuroinflammation, 2014, 11, 143.	7.2	32

3

Deborah A Ferrington

#	Article	IF	CITATIONS
37	Immunoproteasome in animal models of Duchenne muscular dystrophy. Journal of Muscle Research and Cell Motility, 2014, 35, 191-201.	2.0	19
38	Corneal Wound Healing Is Compromised by Immunoproteasome Deficiency. PLoS ONE, 2013, 8, e54347.	2.5	12
39	Immunoproteasome Deficiency Modifies the Alternative Pathway of NFκB Signaling. PLoS ONE, 2013, 8, e56187.	2.5	25
40	Immunoproteasomes. Progress in Molecular Biology and Translational Science, 2012, 109, 75-112.	1.7	306
41	A Novel Role for the Immunoproteasome in Retinal Function. , 2011, 52, 714.		30
42	lmmunoproteasome deficiency alters retinal proteasome's response to stress. Journal of Neurochemistry, 2010, 113, 1481-1490.	3.9	81
43	Mitochondrial DNA Damage as a Potential Mechanism for Age-Related Macular Degeneration. , 2010, 51, 5470.		200
44	Site-Specific Methionine Oxidation Initiates Calmodulin Degradation by the 20S Proteasome. Biochemistry, 2009, 48, 3005-3016.	2.5	38
45	Immunoproteasome responds to injury in the retina and brain. Journal of Neurochemistry, 2008, 106, 158-169.	3.9	65
46	Carbonic anhydrase III and four-and-a-half LIM protein 1 are preferentially oxidized with muscle unloading. Journal of Applied Physiology, 2008, 105, 1554-1561.	2.5	14
47	Mitochondrial Proteomics of the Retinal Pigment Epithelium at Progressive Stages of Age-Related Macular Degeneration. , 2008, 49, 2848.		168
48	Age-Related Macular Degeneration and Retinal Protein Modification by 4-Hydroxy-2-nonenal. , 2007, 48, 3469.		85
49	Changes in Select Redox Proteins of the Retinal Pigment Epithelium in Age-related Macular Degeneration. American Journal of Ophthalmology, 2007, 143, 607-615.e2.	3.3	143
50	Age-dependent inhibition of proteasome chymotrypsin-like activity in the retina. Experimental Eye Research, 2007, 84, 646-654.	2.6	53
51	Transformation of the proteasome with age-related macular degeneration. FEBS Letters, 2007, 581, 885-890.	2.8	73
52	Interaction of Retinal Pigmented Epithelial Cells and CD4 T Cells Leads to T-Cell Anergy. , 2007, 48, 4654.		35
53	Retinal proteins modified by 4-hydroxynonenal: Identification of molecular targets. Experimental Eye Research, 2006, 83, 165-175.	2.6	76
54	Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells. Experimental Eye Research, 2006, 83, 638-650.	2.6	31

#	Article	IF	CITATIONS
55	RPE Cells Resist Bystander Killing by CTLs, but Are Highly Susceptible to Antigen-Dependent CTL Killing. , 2006, 47, 5385.		14
56	Proteomics of the Retinal Pigment Epithelium Reveals Altered Protein Expression at Progressive Stages of Age-Related Macular Degeneration. , 2006, 47, 815.		142
57	Myosin and actin expression and oxidation in aging muscle. Journal of Applied Physiology, 2006, 101, 1581-1587.	2.5	63
58	Protein Nitration With Aging in the Rat Semimembranosus and Soleus Muscles. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 806-812.	3.6	46
59	The Proteome of Central and Peripheral Retina with Progression of Age-Related Macular Degeneration. , 2006, 47, 2280.		97
60	Age-related differences in the adaptive potential of type I skeletal muscle fibers. Experimental Gerontology, 2005, 40, 227-235.	2.8	17
61	Declines in Arrestin and Rhodopsin in the Macula with Progression of Age-Related Macular Degeneration. , 2005, 46, 769.		23
62	Altered proteasome structure, function, and oxidation in aged muscle. FASEB Journal, 2005, 19, 1-24.	0.5	215
63	Catalytic site-specific inhibition of the 20S proteasome by 4-hydroxynonenal. FEBS Letters, 2004, 578, 217-223.	2.8	109
64	Altered proteasome function and subunit composition in aged muscle. Archives of Biochemistry and Biophysics, 2004, 421, 67-76.	3.0	176
65	Modified αA Crystallin in the Retina: Altered Expression and Truncation with Agingâ€. Biochemistry, 2003, 42, 15310-15325.	2.5	63
66	Covalent Modification of Epithelial Fatty Acid-binding Protein by 4-Hydroxynonenal in Vitro and in Vivo. Journal of Biological Chemistry, 2002, 277, 50693-50702.	3.4	125
67	Comparable Levels of Ca-ATPase Inhibition by Phospholamban in Slow-Twitch Skeletal and Cardiac Sarcoplasmic Reticulum. Biochemistry, 2002, 41, 13289-13296.	2.5	49
68	Proteasome Function and Protein Oxidation in the Aged Retina. Experimental Eye Research, 2002, 75, 271-284.	2.6	99
69	Proteasome Function and Protein Oxidation in the Aged Retina. Experimental Eye Research, 2002, 75, 271-284.	2.6	49
70	Proteasome function and protein oxidation in the aged retina. Experimental Eye Research, 2002, 75, 271-84.	2.6	40
71	Selective Degradation of Oxidized Calmodulin by the 20 S Proteasome. Journal of Biological Chemistry, 2001, 276, 937-943.	3.4	107
72	Repair of Oxidized Calmodulin by Methionine Sulfoxide Reductase Restores Ability To Activate the Plasma Membrane Ca-ATPaseâ€. Biochemistry, 1999, 38, 105-112.	2.5	154

#	Article	IF	CITATIONS
73	Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochemical Journal, 1999, 340, 657-669.	3.7	267
74	Altered Turnover of Calcium Regulatory Proteins of the Sarcoplasmic Reticulum in Aged Skeletal Muscle. Journal of Biological Chemistry, 1998, 273, 5885-5891.	3.4	88
75	Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitrite-mediated process?. FEBS Letters, 1996, 379, 286-290.	2.8	127