
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8407166/publications.pdf Version: 2024-02-01

TOMASZ KUBIAK

#	Article	IF	CITATIONS
1	Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures, 2015, 93, 112-121.	5.3	88
2	Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Composite Structures, 2016, 136, 593-601.	5.8	87
3	Local buckling and post-buckling of composite channel-section beams – Numerical and experimental investigations. Composites Part B: Engineering, 2016, 91, 176-188.	12.0	70
4	Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Composite Structures, 2017, 169, 52-61.	5.8	66
5	A model of low-velocity impact damage of composite plates subjected to Compression-After-Impact (CAI) testing. Composite Structures, 2017, 181, 158-170.	5.8	65
6	Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Composite Structures, 2015, 133, 921-929.	5.8	57
7	Buckling and postbuckling behaviour of thin-walled composite channel section column. Composite Structures, 2013, 100, 195-204.	5.8	52
8	Experimental investigation of channel-section composite profiles' behavior with various sequences of plies subjected to static compression. Thin-Walled Structures, 2013, 71, 147-154.	5.3	50
9	Numerical and experimental studies of compressed composite columns with complex open cross-sections. Composite Structures, 2014, 118, 28-36.	5.8	48
10	Static and Dynamic Buckling of Thin-Walled Plate Structures. , 2013, , .		46
11	Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression. Composite Structures, 2015, 134, 199-208.	5.8	46
12	Criteria of dynamic buckling estimation of thin-walled structures. Thin-Walled Structures, 2007, 45, 888-892.	5.3	44
13	Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression. Thin-Walled Structures, 2019, 139, 53-65.	5.3	44
14	Influence of autoclaving process parameters on the buckling and postbuckling behaviour of thin-walled channel section beams. Thin-Walled Structures, 2014, 85, 262-270.	5.3	42
15	Load-carrying capacity of thin-walled composite structures. Composite Structures, 2005, 67, 417-426.	5.8	37
16	Load-carrying capacity of thin-walled composite beams subjected to pure bending. Thin-Walled Structures, 2017, 115, 76-85.	5.3	37
17	Imperfection sensitivity of post-buckling of FML channel section column. Thin-Walled Structures, 2017, 114, 32-38.	5.3	35
18	Numerical and experimental investigations of the post-buckling behaviour of square cross-section composite tubes. Composite Structures, 2015, 132, 1160-1167.	5.8	34

#	Article	IF	CITATIONS
19	The response of laminated composite plates and profiles under low-velocity impact load. Composite Structures, 2019, 207, 1-12.	5.8	31
20	Dynamic buckling of thin-walled composite plates with varying widthwise material properties. International Journal of Solids and Structures, 2005, 42, 5555-5567.	2.7	30
21	Imperfection sensitivity analysis of the nonlinear stability of composite beams – Numerical and experimental investigations. Composites Part B: Engineering, 2016, 94, 360-369.	12.0	26
22	Hybrid versus FR laminate channel section columns – Buckling and postbuckling behaviour. Composite Structures, 2016, 154, 142-149.	5.8	25
23	Estimation of load-carrying capacity for thin-walled composite beams. Composite Structures, 2015, 119, 749-756.	5.8	24
24	Collapse of channel section composite profile subjected to bending Part II: Failure analysis. Composite Structures, 2017, 179, 1-20.	5.8	24
25	Interactive dynamic buckling of orthotropic thin-walled channels subjected to in-plane pulse loading. Composite Structures, 2007, 81, 222-232.	5.8	23
26	Postbuckling behaviour of thin-walled girders with orthotropy varying widthwise. International Journal of Solids and Structures, 2001, 38, 4839-4855.	2.7	22
27	Experimental investigation of pre-damaged thin-walled channel section column subjected to compression. Composites Part B: Engineering, 2018, 147, 56-68.	12.0	17
28	Barely visible impact damages of GFRP laminate profiles – An experimental study. Composites Part B: Engineering, 2019, 158, 10-17.	12.0	16
29	Influence of residual stresses on the buckling behaviour of thin-walled, composite tubes with closed cross-section – Numerical and experimental investigations. Composite Structures, 2019, 229, 111407.	5.8	14
30	Influence of Fibre Arrangement on the Buckling Load of Composite Plates - Analytical Solution. Fibres and Textiles in Eastern Europe, 2015, 23, 92-97.	0.5	14
31	Estimation of load-carrying capacity of multi-layered plated structures. Thin-Walled Structures, 2008, 46, 1003-1010.	5.3	13
32	Global-distortional buckling mode influence on post-buckling behaviour of lip-channel beams. International Journal of Mechanical Sciences, 2020, 184, 105723.	6.7	13
33	The problem of stability of web sheets in box-girders of overhead cranes. Thin-Walled Structures, 2005, 43, 1913-1925.	5.3	11
34	Experimental investigations of thin-walled GFRP beams subjected to pure bending. Thin-Walled Structures, 2016, 107, 397-404.	5.3	11
35	Experimental Investigations of Impact Damage Influence on Behavior of Thin-Walled Composite Beam Subjected to Pure Bending. Materials, 2019, 12, 1127.	2.9	11
36	Estimation of dynamic buckling for composite columns with open cross-section. Computers and Structures, 2011, 89, 2001-2009.	4.4	10

1

#	Article	IF	CITATIONS
37	Influence of blast pressure modeling on the dynamic response of conical and hemispherical shells. Thin-Walled Structures, 2011, 49, 604-610.	5.3	10
38	Corner impact and compression after impact (CAI) of thin-walled composite profile – An experimental study. Composite Structures, 2020, 248, 112502.	5.8	10
39	Damage assessment of channel section columns subjected to uniform compression. Composite Structures, 2018, 202, 500-510.	5.8	9
40	Influence of boundary conditions on the behaviour of composite channel section subjected to pure bending – Experimental study. Composite Structures, 2022, 279, 114727.	5.8	9
41	Influence of manufacturing technique and autoclaving curing rate on the non-linear behaviour of thin-walled, GFRP channel columns – Experimental studies. Thin-Walled Structures, 2020, 157, 107076.	5.3	8
42	Influence of autoclaving process on the stability of thin-walled, composite columns with a square cross-section – Experimental and numerical studies. Composite Structures, 2020, 250, 112594.	5.8	7
43	Numerical and experimental studies of the influence of curing and residual stresses on buckling in thin-walled, CFRP square-section profiles. Composite Structures, 2021, 275, 114411.	5.8	7
44	The failure mode variation in post-buckled GFRP columns with different stacking sequences - Experimental damage analysis and numerical prediction. International Journal of Mechanical Sciences, 2021, 210, 106747.	6.7	7
45	A New Approach of Mathematical Analysis of Structure of Graphene as a Potential Material for Composites. Materials, 2019, 12, 3918.	2.9	6
46	Numerical model of postbuckling behavior of GFRP beams subjected to pure bending. International Journal for Computational Methods in Engineering Science and Mechanics, 2017, 18, 13-24.	2.1	5
47	Nonlinear Plate Theory for Postbuckling Behaviour of Thin-Walled Structures Under Static and Dynamic Load. , 2012, , .		4
48	Impact damage tolerance of laminate short columns subjected to uniform compression – Experimental investigation. Composite Structures, 2019, 226, 111222.	5.8	4
49	The Influence of the Layer Arrangement on the Distortional Post-Buckling Behavior of Open Section Beams. Materials, 2020, 13, 3002.	2.9	4
50	Theory of Thin Plates for Laminates. , 2013, , 27-46.		3
51	Influence of Boundary Conditions on the Critical and Failure Load in the GFPR Channel Cross-Section Columns Subjected to Compression. Solid State Phenomena, 2015, 240, 212-217.	0.3	3
52	Some aspects of the longitudinal-transverse mode in the elastic thin-walled girder under bending moment. Thin-Walled Structures, 2016, 102, 197-204.	5.3	3
53	Failure of Polymer Beams Reinforced with Glass Fibers. Mechanics of Composite Materials, 2020, 56, 195-206.	1.4	2

54 Analytical–Numerical Method. , 2013, , 47-65.

#	Article	IF	CITATIONS
55	Thin-walled composite channel-section beams subjected to pure bending. , 2013, , 215-218.		1
56	THIN-WALLED EPOXY-GLASS FIBRE BEAMS SUBJECTED TO PURE BENDING. Acta Mechanica Et Automatica, 2013, 7, 83-88.	0.6	1
57	Investigations of horizontal rotation at the support of bending beams as proof of global distortional buckling mode. Composite Structures, 2022, 293, 115742.	5.8	1
58	Finite Element Method. , 2013, , 67-96.		0
59	Thin Plates. , 2013, , 113-139.		0
60	Thin-Walled Columns. , 2013, , 141-158.		0
61	Experimental Investigation of GFRP Laminate Thin-Walled Column Subjected to Uniform Compression. Solid State Phenomena, 2015, 240, 185-190.	0.3	Ο
62	Influence of Stacking Sequence on Strength and Stability of Suspension System Control Arm CFRP Laminate Rods. Materials, 2021, 14, 5849.	2.9	0
63	COMPOSITE PLATES DYNAMIC BUCKLING OF THIN -WALLED. , 2006, , 123-130.		Ο
64	Dynamic Buckling Estimation for Beam-Columns with Open Cross-Sections. , 0, , .		0