
## David W Dubois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8407020/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces.<br>Remote Sensing of Environment, 2013, 136, 135-145.                                             | 11.0 | 143       |
| 2  | Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico. Environmental Research, 2014, 129, 39-46.                       | 7.5  | 72        |
| 3  | Long-Term Efficiencies of Dust Suppressants to Reduce PM <sub>10</sub> Emissions from Unpaved Roads. Journal of the Air and Waste Management Association, 1999, 49, 3-16.                            | 1.9  | 66        |
| 4  | Chemical mass balance source apportionment for combined PM2.5 measurements from U.S. non-urban<br>and urban long-term networksâ~†. Atmospheric Environment, 2010, 44, 4908-4918.                     | 4.1  | 61        |
| 5  | Attribution of sulfate aerosols in Federal Class I areas of the western United States based on trajectory regression analysis. Atmospheric Environment, 2006, 40, 3433-3447.                         | 4.1  | 44        |
| 6  | Source reconciliation of atmospheric dust causing visibility impairment in Class I areas of the western United States. Journal of Geophysical Research, 2009, 114, .                                 | 3.3  | 40        |
| 7  | Middle- and Neighborhood-Scale Variations of PM <sub>10</sub> Source Contributions in Las Vegas,<br>Nevada. Journal of the Air and Waste Management Association, 1999, 49, 641-654.                  | 1.9  | 34        |
| 8  | Regional Source Identification Using Lagrangian Stochastic Particle Dispersion and HYSPLIT<br>Backward-Trajectory Models. Journal of the Air and Waste Management Association, 2011, 61, 660-672.    | 1.9  | 33        |
| 9  | PM <sub>2.5</sub> Source Apportionment: Reconciling Receptor Models for U.S. Nonurban and Urban Long-Term Networks. Journal of the Air and Waste Management Association, 2011, 61, 1204-1217.        | 1.9  | 33        |
| 10 | Assessment of the local windblown component of dust in the western United States. Journal of<br>Geophysical Research, 2007, 112, .                                                                   | 3.3  | 27        |
| 11 | In situ observations of soil minerals and organic matter in the early phases of prescribed fires.<br>Journal of Geophysical Research, 2012, 117, .                                                   | 3.3  | 22        |
| 12 | Fine particulate matter and visibility in the Lake Tahoe Basin: Chemical characterization, trends, and source apportionment. Journal of the Air and Waste Management Association, 2012, 62, 953-965. | 1.9  | 20        |
| 13 | Evaluation of Regional-Scale Receptor Modeling. Journal of the Air and Waste Management Association, 2010, 60, 26-42.                                                                                | 1.9  | 19        |
| 14 | Spatial Variability of Unpaved Road Dust PM10 Emission Factors near El Paso, Texas. Journal of the Air<br>and Waste Management Association, 2005, 55, 3-12.                                          | 1.9  | 16        |
| 15 | Windâ€mediated horseweed ( C onyza canadensis ) gene flow: pollen emission, dispersion, and deposition. Ecology and Evolution, 2015, 5, 2646-2658.                                                   | 1.9  | 16        |
| 16 | Assessment of the Contribution of Wildfires to Ozone Concentrations in the Central US-Mexico<br>Border Region. Aerosol and Air Quality Research, 2013, 13, 838-848.                                  | 2.1  | 13        |
| 17 | Monitoring, Source Identification and Health Risks of Air Toxics in Albuquerque, New Mexico, U.S.A<br>Aerosol and Air Quality Research, 2015, 15, 556-571.                                           | 2.1  | 7         |
| 18 | Development of a geospatial screening tool to identify source areas of windblown dust.<br>Environmental Modelling and Software, 2009, 24, 1003-1011.                                                 | 4.5  | 4         |

DAVID W DUBOIS

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effect of anthropogenic volatile organic compound sources on ozone in Boise, Idaho.<br>Environmental Chemistry, 2014, 11, 445.                                                                                              | 1.5 | 3         |
| 20 | Spatiotemporal imputation of MODIS land surface temperature using machine learning techniques<br>(Case study: New Mexico's Lower Rio Grande Valley). Remote Sensing Applications: Society and<br>Environment, 2021, 24, 100651. | 1.5 | 2         |
| 21 | Correction to "In situ observations of soil minerals and organic matter in the early phases of prescribed firesâ€: Journal of Geophysical Research, 2012, 117, n/a-n/a.                                                         | 3.3 | 1         |
| 22 | Fire as a Long-Term Stewardship Issue for Soils Contaminated With Radionuclides in the Western U.S<br>, 2007, , .                                                                                                               |     | 1         |
| 23 | Fungal genus detected in soils of Chihuahuan Desert during dust storms along United States-Mexico<br>border. Terra Latinoamericana, 2020, 38, 725-734.                                                                          | 0.3 | 0         |