
Subramanian Jayalakshmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8406916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical Properties of Sustainable Metal Matrix Composites: A Review on the Role of Green Reinforcements and Processing Methods. Technologies, 2022, 10, 32.	3.0	12
2	Nanostructured Coatings: Review on Processing Techniques, Corrosion Behaviour and Tribological Performance. Nanomaterials, 2022, 12, 1323.	1.9	24
3	Patterning SS304 Surface at Microscale to Reduce Wettability and Corrosion in Saline Water. Metals, 2022, 12, 1137.	1.0	3
4	Magnesium Based Hybrid Nanocomposites: An Insight into Nanoparticle Effects on the Microstructure and Mechanical Properties. Current Nanomaterials, 2021, 6, 222-230.	0.2	0
5	Strengthening Mechanisms in CoCrFeNiX0.4 (Al, Nb, Ta) High Entropy Alloys Fabricated by Powder Plasma Arc Additive Manufacturing. Nanomaterials, 2021, 11, 721.	1.9	21
6	Nanodiamond Particles as Secondary Additive for Polyalphaolefin Oil Lubrication of Steel–Aluminium Contact. Nanomaterials, 2021, 11, 1438.	1.9	14
7	Influence of Silicon and Manganese on the Mechanical Properties of Additive Manufactured Cu–Al Alloys by Cold Metal Transfer Welding. Metallography, Microstructure, and Analysis, 2021, 10, 314-320.	0.5	0
8	Influence of Silicon and Magnesium on the Mechanical Properties of Additive Manufactured Cu-Al Alloy. 3D Printing and Additive Manufacturing, 2021, 8, 331-339.	1.4	4
9	Thermal Shock Resistance and Thermal Insulation Capability of Laser-Glazed Functionally Graded Lanthanum Magnesium Hexaluminate/Yttria-Stabilised Zirconia Thermal Barrier Coating. Materials, 2021, 14, 3865.	1.3	6
10	Utilizing Iron as Reinforcement to Enhance Ambient Mechanical Response and Impression Creep Response of Magnesium. Metals, 2021, 11, 1448.	1.0	3
11	Anticorrosion Behaviour of SS304 Microgroove Surfaces in Saline Water. Metals, 2021, 11, 1543.	1.0	4
12	Polymeric Nanostructures for Prospective Tribological Application in Min-iaturized Devices: A Review. Current Nanomaterials, 2020, 05, .	0.2	1
13	Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique. Materials Today: Proceedings, 2018, 5, 16280-16285.	0.9	6
14	Tribological characteristics of magnesium nanocomposites. Materials Today: Proceedings, 2018, 5, 16575-16579.	0.9	2
15	Microstructure and damping characteristics of Mg and its composites containing metastable Al ₈₅ Ti ₁₅ particle. Journal of Composite Materials, 2016, 50, 2565-2573.	1.2	8
16	Processing and Properties of Aluminum and Magnesium Based Composites Containing Amorphous Reinforcement: A Review. Metals, 2015, 5, 743-762.	1.0	22
17	Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. Journal of Alloys and Compounds, 2015, 627, 192-199.	2.8	48
18	Nano-AlN particle reinforced Mg composites: Microstructural and mechanical properties. Materials Science and Technology, 2015, 31, 1122-1131.	0.8	62

#	Article	IF	CITATIONS
19	Mg/BN nanocomposites: Nano-BN addition for enhanced room temperature tensile and compressive response. Journal of Composite Materials, 2015, 49, 3045-3055.	1.2	29
20	Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates. Materials Chemistry and Physics, 2014, 143, 1178-1190.	2.0	45
21	Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg–Ti composite. Journal of Magnesium and Alloys, 2014, 2, 13-19.	5.5	17
22	Using heat treatment effects and EBSD analysis to tailor microstructure of hybrid Mg nanocomposite for enhanced overall mechanical response. Materials Science and Technology, 2014, 30, 1309-1320.	0.8	9
23	Effect of Ag and Cu trace additions on the microstructural evolution and mechanical properties of Mg–5Sn alloy. Journal of Alloys and Compounds, 2013, 565, 56-65.	2.8	54
24	Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg–5.6Ti composite. Journal of Alloys and Compounds, 2013, 575, 207-217.	2.8	31
25	Structural and mechanical properties of Ni60Nb40 amorphous alloy particle reinforced Al-based composites produced by microwave-assisted rapid sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 581, 119-127.	2.6	66
26	Effect of nano-Al2O3 addition and heat treatment on the microstructure and mechanical properties of Mg-(5.6Ti+3Al) composite. Materials Characterization, 2013, 75, 150-164.	1.9	18
27	Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method. Materials, 2013, 6, 1940-1955.	1.3	57
28	Microstructure and Mechanical Properties of Mg-5Nb Metal-Metal Composite Reinforced with Nano SiC Ceramic Particles. Metals, 2012, 2, 178-194.	1.0	13
29	Influence of Micron-Ti and Nano-Cu Additions on the Microstructure and Mechanical Properties of Pure Magnesium. Metals, 2012, 2, 274-291.	1.0	24
30	Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications. Applied Energy, 2012, 90, 94-99.	5.1	43
31	Microstructural and mechanical properties of AZ31 magnesium alloy with Cr addition and CO2 incorporation during processing. Materials Chemistry and Physics, 2012, 134, 721-727.	2.0	9
32	Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of Mg–(Ti +n-Al2O3) composites. Journal of Alloys and Compounds, 2011, 509, 7229-7237.	2.8	57
33	Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 149-160.	2.6	42
34	Feasibility study on utilizing carbon dioxide during the processing of Mg–Al alloys. Journal of Materials Processing Technology, 2011, 211, 1416-1422.	3.1	11
35	Hydrogenation properties of Ni-Nb-Zr–Ta amorphous ribbons. Intermetallics, 2010, 18, 1988-1993.	1.8	24
36	Hydrogenation of Ti ₅₀ Zr ₂₅ Co ₂₅ amorphous ribbons and its effect on their structural and mechanical properties. Philosophical Magazine Letters, 2008, 88, 303-315.	0.5	20

#	Article	IF	CITATIONS
37	Hydrogen-induced amorphization and embrittlement resistance in Ti-based in situ composite with bcc-phase in an amorphous matrix. Journal of Materials Research, 2007, 22, 428-436.	1.2	13
38	Effect of hydrogenation on the structural, thermal and mechanical properties of Zr50–Ni27–Nb18–Co5 amorphous alloy. Journal of Alloys and Compounds, 2006, 417, 195-202.	2.8	26
39	Damage Tolerant Magnesium Metal Matrix Composites: Influence of Reinforcement and Processing. Materials and Manufacturing Processes, 2005, 20, 747-760.	2.7	6
40	Influence of processing and reinforcement on microstructure and impact behaviour of magnesium alloy AM100. Sadhana - Academy Proceedings in Engineering Sciences, 2004, 29, 509-523.	0.8	5
41	Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1135-1140.	3.8	50
42	Structural, Physical and Mechanical Properties of Mg-Al Alloys Processed under CO ₂ Atmosphere. Advanced Materials Research, 0, 545, 247-250.	0.3	1