Chi-Ying Vanessa Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8406761/publications.pdf

Version: 2024-02-01

567281 580821 27 657 15 25 citations h-index g-index papers 28 28 28 1217 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Scalable synthesis of ordered mesoporous binary metal oxide: CexZr1-xO2 as thermally stable catalyst for enhanced CO oxidation. Materials Today Communications, 2021, 26, 101811.	1.9	3
2	Imparting UiO-66 with fast cation exchange property via sulfonating organic linkers for selective adsorption. Separation and Purification Technology, 2021, 260, 118219.	7.9	20
3	Protonated Emeraldine Polyaniline Threaded MIL-101 as a Conductive High Surface Area Nanoporous Electrode. ACS Energy Letters, 2021, 6, 3769-3779.	17.4	19
4	Studies of Superoxide Degradation Kinetics and Electrolyte Management for a Reversible NaO ₂ Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 4317-4324.	6.7	9
5	Interfacing TiO ₂ (B) Nanofibers with Li ₄ Ti ₅ O ₁₂ Towards Highly Reversible and Durable TiO ₂ â€based Anode for Liâ⁻'lon Batteries. Energy Technology, 2019, 7, 107-112.	3.8	4
6	Highly Selective Transport of Alkali Metal Ions by Nanochannels of Polyelectrolyte Threaded MIL-53 Metal Organic Framework. Nano Letters, 2019, 19, 4990-4996.	9.1	31
7	Exploring the ionic interfaces of three-electrolyte pH differential power sources. Electrochimica Acta, 2019, 320, 134526.	5.2	1
8	Recent Development of Aprotic Naâ€O 2 Batteries. Batteries and Supercaps, 2019, 2, 724-724.	4.7	1
9	Hierarchical macropore-mesoporous shell carbon dispersed with Li4Ti5O12 for excellent high rate sub-freezing Li-ion battery performance. Carbon, 2019, 145, 614-621.	10.3	17
10	An Acid–Base Battery with Oxygen Electrodes: A Laboratory Demonstration of Electrochemical Power Sources. Journal of Chemical Education, 2019, 96, 1701-1706.	2.3	9
11	Recent Development of Aprotic Naâ^'O ₂ Batteries. Batteries and Supercaps, 2019, 2, 725-742.	4.7	44
12	Three-electrolyte electrochemical energy storage systems using both anion- and cation-exchange membranes as separators. Energy, 2019, 167, 1011-1018.	8.8	18
13	High-voltage pH differential vanadium-hydrogen flow battery. Materials Today Energy, 2018, 10, 126-131.	4.7	12
14	Hydrogen battery using neutralization energy. Nano Energy, 2018, 53, 240-244.	16.0	25
15	Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable Low-Temperature Aqueous Combustion. ACS Applied Materials & Deposited By Scalable By	8.0	4
16	Advancing Lithium–Oxygen Battery Technology with an Iron–Nitrogenâ€Doped Mesoporous Core–Shell Carbon Cathode Loaded with Ruthenium(IV) Oxide Nanoparticles. Energy Technology, 2017, 5, 732-739.	3.8	6
17	Colloidal Solution Combustion Synthesis: Toward Mass Production of a Crystalline Uniform Mesoporous CeO ₂ Catalyst with Tunable Porosity. Chemistry of Materials, 2016, 28, 2768-2775.	6.7	65
18	A Study of Alkaline-Based H ₂ -Br ₂ and H ₂ -I ₂ Reversible Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F1471-F1479.	2.9	7

#	Article	IF	CITATIONS
19	Scalable Template-Free Synthesis of Na ₂ Ti _{O₁₃ Na₂Ti_{O₁₃ Nanorods with Composition Tunable for Synergistic Performance in Sodium-Ion Batteries. Industrial & mp; Engineering Chemistry Research, 2016, 55, 10065-10072.}}	3.7	43
20	Investigations of High Voltage Vanadium-Metal Hydride Flow Battery toward kWh Scale Storage with 100 cm ² Electrodes. Journal of the Electrochemical Society, 2016, 163, A5180-A5187.	2.9	15
21	Combustion synthesis of Cr ₂ O ₃ octahedra with a chromium-containing metal–organic framework as a sacrificial template. CrystEngComm, 2015, 17, 2620-2623.	2.6	21
22	Polystyrenesulfonate Threaded in MIL-101Cr(III): A Cationic Polyelectrolyte Synthesized Directly into a Metal–Organic Framework. Chemistry of Materials, 2015, 27, 3601-3608.	6.7	52
23	Metal–Organic Framework Threaded with Aminated Polymer Formed <i>in Situ</i> for Fast and Reversible Ion Exchange. Journal of the American Chemical Society, 2014, 136, 7209-7212.	13.7	107
24	A functionalized MIL-101(Cr) metal–organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chemical Communications, 2013, 49, 10629.	4.1	50
25	High Voltage Vanadium-Metal Hydride Rechargeable Semi-Flow Battery. Journal of the Electrochemical Society, 2013, 160, A1384-A1389.	2.9	24
26	Complex Impedance with Transmission Line Model and Complex Capacitance Analysis of Ion Transport and Accumulation in Hierarchical Core-Shell Porous Carbons. Journal of the Electrochemical Society, 2013, 160, H271-H278.	2.9	50
27	Highly Durable Pt–Ru-Doped Ce _{0.9} Zr _{0.1} O ₂ as an Effective Dual Catalyst for Low-Temperature Simultaneous Propane and Carbon Monoxide Oxidation. Journal of Physical Chemistry C, 0, , .	3.1	0