Christian März

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8406047/publications.pdf

Version: 2024-02-01

45 papers

1,344 citations

393982 19 h-index 35 g-index

48 all docs

48 docs citations

48 times ranked

2065 citing authors

#	Article	IF	Citations
1	Biogeochemical consequences of a changing Arctic shelf seafloor ecosystem. Ambio, 2022, 51, 370-382.	2.8	7
2	Nutrient pathways and their susceptibility to past and future change in the Eurasian Arctic Ocean. Ambio, 2022, 51, 355-369.	2.8	10
3	Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nature Communications, 2021, 12, 275.	5.8	41
4	The evolution of early diagenetic processes at the Mozambique margin during the last glacial-interglacial transition. Geochimica Et Cosmochimica Acta, 2021, 300, 79-94.	1.6	11
5	Technical note: Uncovering the influence of methodological variations on the extractability of iron-bound organic carbon. Biogeosciences, 2021, 18, 3409-3419.	1.3	10
6	Workflow model for the digitization of mudrocks. Geological Society Special Publication, 2020, 484, 165-187.	0.8	3
7	The effect of extraction techniques on calcium concentrations and isotope ratios of marine pore water. Isotopes in Environmental and Health Studies, 2020, 56, 51-68.	0.5	2
8	Arctic Continental Margin Sediments as Possible Fe and Mn Sources to Seawater as Sea Ice Retreats: Insights From the Eurasian Margin. Global Biogeochemical Cycles, 2020, 34, e2020GB006581.	1.9	5
9	Sedimentation of the Kimmeridge Clay Formation in the Cleveland Basin (Yorkshire, UK). Minerals (Basel, Switzerland), 2020, 10, 977.	0.8	3
10	Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190359.	1.6	17
11	The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200266.	1.6	11
12	Experimental evaluation of the extractability of iron bound organic carbon in sediments as a function of carboxyl content. Chemical Geology, 2020, 556, 119853.	1.4	17
13	Benthic phosphorus cycling within the Eurasian marginal sea ice zone. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190358.	1.6	6
14	Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200223.	1.6	10
15	Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190364.	1.6	17
16	The Secret †After Life†of Foraminifera: Big Things Out of Small. Minerals (Basel, Switzerland), 2020, 10, 550.	0.8	3
17	Development of Iron Speciation Reference Materials for Palaeoredox Analysis. Geostandards and Geoanalytical Research, 2020, 44, 581-591.	1.7	31
18	Pyrite oxidation in shales: Implications for palaeo-redox proxies based on geochemical and SEM-EDX evidence. Sedimentary Geology, 2019, 389, 186-199.	1.0	31

#	Article	IF	CITATIONS
19	Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK. Climate of the Past, 2019, 15, 1581-1601.	1.3	9
20	Deep Sulfate-Methane-Transition and sediment diagenesis in the Gulf of Alaska (IODP Site U1417). Marine Geology, 2019, 417, 105986.	0.9	8
21	Local to global controls on the deposition of organic-rich muds across the Late Jurassic Laurasian Seaway. Journal of the Geological Society, 2019, 176, 1143-1153.	0.9	7
22	Dynamics of Manganese and Cerium Enrichments in Arctic Ocean Sediments: A Case Study From the Alpha Ridge. Frontiers in Earth Science, 2019, 6, .	0.8	23
23	Cordilleran ice-sheet growth fueled primary productivity in the Gulf of Alaska, northeast Pacific Ocean. Geology, 2018, 46, 307-310.	2.0	19
24	Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates. Marine Geology, 2018, 404, 84-96.	0.9	45
25	Quantifying <scp>K</scp> , <scp>U</scp> , and <scp>T</scp> h contents of marine sediments using shipboard natural gamma radiation spectra measured on <scp>DV</scp> <scp><i>JOIDES</i></scp> <scp><i>Scp>No Geochemistry, Geochemistry, Geophysics, Geosystems, 2017, 18, 1053-1064.</i></scp>	1.0	74
26	Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO2 storage site before CO2 arrival. Environmental Earth Sciences, 2017, 76, 1.	1.3	7
27	Identifying biogenic silica: Mudrock micro-fabric explored through charge contrast imaging. American Mineralogist, 2017, 102, 833-844.	0.9	12
28	A multiproxy study distinguishes environmental change from diagenetic alteration in the recent sedimentary record of the inner Cadiz Bay (SW Spain). Holocene, 2016, 26, 1355-1370.	0.9	8
29	Repeated enrichment of trace metals and organic carbon on an Eocene high-energy shelf caused by anoxia and reworking. Geology, 2016, 44, 1011-1014.	2.0	19
30	Elevated uranium concentrations in Lake Baikal sediments: Burial and early diagenesis. Chemical Geology, 2016, 441, 92-105.	1.4	25
31	A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology, 2015, 43, 963-966.	2.0	77
32	Towards a mechanistic understanding of carbon stabilization in manganese oxides. Nature Communications, 2015, 6, 7628.	5.8	102
33	Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15042-15047.	3.3	74
34	Anoxic Oceans. , 2015, , 1-6.		0
35	The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. Paleoceanography, 2014, 29, 471-488.	3.0	55
36	An Arctic perspective on dating Mid-Late Pleistocene environmental history. Quaternary Science Reviews, 2014, 92, 9-31.	1.4	48

#	Article	IF	Citations
37	Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean. Global and Planetary Change, 2013, 108, 100-118.	1.6	29
38	The evolution of early diagenetic signals in Bering Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3Ma. Geochimica Et Cosmochimica Acta, 2013, 109, 175-196.	1.6	37
39	Establishment of euxinic conditions in the Holocene Black Sea. Geology, 2013, 41, 431-434.	2.0	56
40	Diagenetic barium cycling in Black Sea sediments – A case study for anoxic marine environments. Geochimica Et Cosmochimica Acta, 2012, 88, 88-105.	1.6	67
41	Geochemical environment of Cenomanian - Turonian black shale deposition at Wunstorf (northern) Tj ETQq $1\ 1$	0.784314	rgBT ₅₇ /Overlo
42	Variable Eocene-Miocene sedimentation processes and bottom water redox conditions in the Central Arctic Ocean (IODP Expedition 302). Earth and Planetary Science Letters, 2011, 310, 526-537.	1.8	14
43	A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochimica Et Cosmochimica Acta, 2010, 74, 7100-7115.	1.6	215
44	Are the Kimmeridge Clay deposits affected by "burn-down―events? Palynological and geochemical studies on a 1 metre long section from the Upper Kimmeridge Clay Formation (Dorset, UK). Sedimentary Geology, 2009, 222, 301-313.	1.0	4
45	Coniacian–Santonian deep ocean anoxia/euxinia inferred from molecular and inorganic markers: Results from the Demerara Rise (ODP Leg 207). Organic Geochemistry, 2008, 39, 1092-1096.	0.9	14