Enrico Ramirez-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405980/publications.pdf

Version: 2024-02-01

190 papers 16,275 citations

67 h-index 123 g-index

193 all docs

193 docs citations

times ranked

193

8564 citing authors

#	Article	IF	Citations
1	Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature, 2017, 551, 80-84.	13.7	814
2	Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science, 2017, 358, 1556-1558.	6.0	811
3	First results from the IllustrisTNG simulations: a tale of two elements – chemical evolution of magnesium and europium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1206-1224.	1.6	746
4	Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science, 2017, 358, 1570-1574.	6.0	517
5	Gamma-Ray Bursts in the <i>Swift </i> Era. Annual Review of Astronomy and Astrophysics, 2009, 47, 567-617.	8.1	456
6	Broadband observations of the naked-eye γ-ray burst GRB 080319B. Nature, 2008, 455, 183-188.	13.7	449
7	A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star. Science, 2011, 333, 203-206.	6.0	448
8	An optical supernova associated with the X-ray flash XRF 060218. Nature, 2006, 442, 1011-1013.	13.7	432
9	A giant γ-ray flare from the magnetar SGR 1806–20. Nature, 2005, 434, 1107-1109.	13.7	425
10	HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE. Astrophysical Journal, 2013, 767, 25.	1.6	386
11	ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES. Astrophysical Journal Letters, 2011, 736, L21.	3.0	284
12	The progenitors of short gamma-ray bursts. New Journal of Physics, 2007, 9, 17-17.	1.2	281
13	High-resolution calculations of merging neutron stars - III. Gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2003, 345, 1077-1090.	1.6	241
14	Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science, 2017, 358, 1574-1578.	6.0	240
15	PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION. Astrophysical Journal, 2014, 783, 23.	1.6	239
16	THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY-SINGLE STELLAR ENCOUNTERS. Astrophysical Journal, 2014, 784, 71.	1.6	235
17	Events in the life of a cocoon surrounding a light, collapsar jet. Monthly Notices of the Royal Astronomical Society, 2002, 337, 1349-1356.	1.6	217
18	The White Dwarf Initial–Final Mass Relation for Progenitor Stars from 0.85 to 7.5 <i>M</i> _⊙ . Astrophysical Journal, 2018, 866, 21.	1.6	209

#	Article	IF	CITATIONS
19	Electromagnetic evidence that SSS17a is the result of a binary neutron star merger. Science, 2017, 358, 1583-1587.	6.0	203
20	A Unified Model for Tidal Disruption Events. Astrophysical Journal Letters, 2018, 859, L20.	3.0	200
21	TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES. Astrophysical Journal, 2009, 695, 404-419.	1.6	188
22	New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths. Astrophysical Journal, 2017, 838, 149.	1.6	179
23	COLLISIONS OF WHITE DWARFS AS A NEW PROGENITOR CHANNEL FOR TYPE Ia SUPERNOVAE. Astrophysical Journal, 2009, 705, L128-L132.	1.6	176
24	SURFACE DETONATIONS IN DOUBLE DEGENERATE BINARY SYSTEMS TRIGGERED BY ACCRETION STREAM INSTABILITIES. Astrophysical Journal Letters, 2010, 709, L64-L69.	3.0	163
25	Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters. Astrophysical Journal, 2019, 871, 91.	1.6	158
26	CONSEQUENCES OF THE EJECTION AND DISRUPTION OF GIANT PLANETS. Astrophysical Journal, 2011, 732, 74.	1.6	157
27	A DARK YEAR FOR TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2015, 809, 166.	1.6	157
28	THE HISTORY OF <i>R</i> -PROCESS ENRICHMENT IN THE MILKY WAY. Astrophysical Journal, 2015, 807, 115.	1.6	153
29	Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature, 2015, 526, 542-545.	13.7	144
30	PRELUDE TO A DOUBLE DEGENERATE MERGER: THE ONSET OF MASS TRANSFER AND ITS IMPACT ON GRAVITATIONAL WAVES AND SURFACE DETONATIONS. Astrophysical Journal, 2011, 737, 89.	1.6	139
31	Weighing Black Holes Using Tidal Disruption Events. Astrophysical Journal, 2019, 872, 151.	1.6	139
32	Formation rates of core-collapse supernovae and gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2004, 348, 1215-1228.	1.6	136
33	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	1.6	136
34	THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2016, 827, 3.	1.6	135
35	NECESSARY CONDITIONS FOR SHORT GAMMA-RAY BURST PRODUCTION IN BINARY NEUTRON STAR MERGERS. Astrophysical Journal Letters, 2014, 788, L8.	3.0	128
36	THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION. Astrophysical Journal, 2012, 757, 134.	1.6	125

#	Article	IF	Citations
37	USING THE X-RAY MORPHOLOGY OF YOUNG SUPERNOVA REMNANTS TO CONSTRAIN EXPLOSION TYPE, EJECTA DISTRIBUTION, AND CHEMICAL MIXING. Astrophysical Journal, 2011, 732, 114.	1.6	124
38	PHASE TRANSITIONS AND He-SYNTHESIS-DRIVEN WINDS IN NEUTRINO COOLED ACCRETION DISKS: PROSPECTS FOR LATE FLARES IN SHORT GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 699, L93-L96.	1.6	118
39	SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING. Astrophysical Journal, 2010, 720, 953-975.	1.6	115
40	THE ROLE OF STELLAR FEEDBACK IN THE DYNAMICS OF H II REGIONS. Astrophysical Journal, 2014, 795, 121.	1.6	109
41	ASYMMETRIC ACCRETION FLOWS WITHIN A COMMON ENVELOPE. Astrophysical Journal, 2015, 803, 41.	1.6	101
42	A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a. Astrophysical Journal Letters, 2017, 848, L34.	3.0	101
43	THE STAR INGESTING LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS. Astrophysical Journal, 2009, 697, L77-L80.	1.6	100
44	The Complete Evolution of a Neutron-star Binary through a Common Envelope Phase Using 1D Hydrodynamic Simulations. Astrophysical Journal Letters, 2019, 883, L45.	3.0	98
45	On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers. Astrophysical Journal Letters, 2017, 840, L14.	3.0	96
46	How the merger of two white dwarfs depends on their mass ratio: orbital stability and detonations at contact. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2417-2428.	1.6	94
47	Significant and variable linear polarization during the prompt optical flash of GRB 160625B. Nature, 2017, 547, 425-427.	13.7	93
48	Jets, winds and bursts from coalescing neutron stars. Monthly Notices of the Royal Astronomical Society, 2002, 336, L7-L11.	1.6	90
49	THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES. Astrophysical Journal, 2012, 760, 103.	1.6	86
50	The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers. Astrophysical Journal Letters, 2017, 835, L34.	3.0	84
51	THREE-DIMENSIONAL SIMULATIONS OF TIDALLY DISRUPTED SOLAR-TYPE STARS AND THE OBSERVATIONAL SIGNATURES OF SHOCK BREAKOUT. Astrophysical Journal, 2009, 705, 844-853.	1.6	84
52	SIMULATIONS OF GAMMA-RAY BURST JETS IN A STRATIFIED EXTERNAL MEDIUM: DYNAMICS, AFTERGLOW LIGHT CURVES, JET BREAKS, AND RADIO CALORIMETRY. Astrophysical Journal, 2012, 751, 57.	1.6	82
53	Lessons from the Onset of a Common Envelope Episode: the Remarkable M31 2015 Luminous Red Nova Outburst. Astrophysical Journal, 2017, 835, 282.	1.6	80
54	Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes. Astrophysical Journal, 2017, 838, 56.	1.6	79

#	Article	lF	Citations
55	A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT?. Astrophysical Journal, 2015, 798, 12.	1.6	78
56	THE GALACTIC SUPERNOVA REMNANT W49B LIKELY ORIGINATES FROM A JET-DRIVEN, CORE-COLLAPSE EXPLOSION. Astrophysical Journal, 2013, 764, 50.	1.6	77
57	ON THE ACCRETION-FED GROWTH OF NEUTRON STARS DURING COMMON ENVELOPE. Astrophysical Journal Letters, 2015, 798, L19.	3.0	77
58	TYPING SUPERNOVA REMNANTS USING X-RAY LINE EMISSION MORPHOLOGIES. Astrophysical Journal, 2009, 706, L106-L109.	1.6	74
59	Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population. Astrophysical Journal, 2017, 850, 22.	1.6	73
60	The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events. Astrophysical Journal, 2019, 887, 218.	1.6	72
61	THE FATE OF THE COMPACT REMNANT IN NEUTRON STAR MERGERS. Astrophysical Journal, 2015, 812, 24.	1.6	71
62	ILLUMINATING MASSIVE BLACK HOLES WITH WHITE DWARFS: ORBITAL DYNAMICS AND HIGH-ENERGY TRANSIENTS FROM TIDAL INTERACTIONS. Astrophysical Journal, 2014, 794, 9.	1.6	70
63	Gone with the wind: Where is the missing stellar wind energy from massive star clusters?. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2701-2716.	1.6	70
64	OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION. Astrophysical Journal, 2016, 819, 3.	1.6	69
65	Opaque or Transparent? A Link between Neutrino Optical Depths and the Characteristic Duration of Short Gamma-Ray Bursts. Astrophysical Journal, 2004, 608, L5-L8.	1.6	68
66	An Off-Axis Model of GRB 031203. Astrophysical Journal, 2005, 625, L91-L94.	1.6	68
67	A Compact Binary Merger Model for the Short, Hard GRB 050509b. Astrophysical Journal, 2005, 630, L165-L168.	1.6	67
68	A likely decade-long sustained tidal disruption event. Nature Astronomy, 2017, 1, .	4.2	63
69	GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2012, 746, 122.	1.6	61
70	SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI. Astrophysical Journal, 2013, 777, 133.	1.6	60
71	On the diversity of short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2003, 343, L36-L40.	1.6	59
72	OPTICAL TRANSIENTS FROM THE UNBOUND DEBRIS OF TIDAL DISRUPTION. Astrophysical Journal, 2010, 714, 155-162.	1.6	56

#	Article	IF	CITATIONS
73	A luminosity distribution for kilonovae based on short gamma-ray burst afterglows. Monthly Notices of the Royal Astronomical Society, 2019, 486, 672-690.	1.6	56
74	AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li. Astrophysical Journal Letters, 2016, 818, L32.	3.0	55
75	The fine line between total and partial tidal disruption events. Astronomy and Astrophysics, 2017, 600, A124.	2.1	55
76	A Comparison of the X-Ray Emission from Tidal Disruption Events with those of Active Galactic Nuclei. Astrophysical Journal, 2018, 852, 37.	1.6	55
77	The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source*. Astrophysical Journal Letters, 2017, 848, L30.	3.0	54
78	Comparing Neutron Star Kicks to Supernova Remnant Asymmetries. Astrophysical Journal, 2017, 844, 84.	1.6	54
79	THE DISTRIBUTION OF COALESCING COMPACT BINARIES IN THE LOCAL UNIVERSE: PROSPECTS FOR GRAVITATIONAL-WAVE OBSERVATIONS. Astrophysical Journal Letters, 2010, 725, L91-L96.	3.0	52
80	INTERPRETING SHORT GAMMA-RAY BURST PROGENITOR KICKS AND TIME DELAYS USING THE HOST GALAXY–DARK MATTER HALO CONNECTION. Astrophysical Journal, 2014, 792, 123.	1.6	52
81	The Young Supernova Experiment: Survey Goals, Overview, and Operations. Astrophysical Journal, 2021, 908, 143.	1.6	52
82	Precursors and e \hat{A} ±pair loading from erupting fireballs. Monthly Notices of the Royal Astronomical Society, 2002, 331, 197-202.	1.6	51
83	THE CLOSE STELLAR COMPANIONS TO INTERMEDIATE-MASS BLACK HOLES. Astrophysical Journal, 2016, 819, 70.	1.6	51
84	iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER. Astrophysical Journal Letters, 2015, 803, L24.	3.0	50
85	A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6Âyr before explosion. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2073-2093.	1.6	48
86	COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND <i>r</i> -PROCESS SYNTHESIS IN THE EARLY UNIVERSE. Astrophysical Journal Letters, 2015, 802, L22.	3.0	47
87	First Light with RATIR: An Automated 6-band Optical/NIR Imaging Camera. Proceedings of SPIE, 2012, , .	0.8	46
88	Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections. Astrophysical Journal, 2018, 853, 140.	1.6	46
89	Massive Stellar Triples Leading to Sequential Binary Black Hole Mergers in the Field. Astrophysical Journal Letters, 2021, 907, L19.	3.0	45
90	Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation. Astrophysical Journal, 2017, 845, 173.	1.6	44

#	Article	IF	CITATIONS
91	The Tidal Disruption of Sun-like Stars by Massive Black Holes. Astrophysical Journal Letters, 2019, 882, L25.	3.0	43
92	Electromagnetic transients as triggers in searches for gravitational waves from compact binary mergers. Physical Review D, 2013, 87, .	1.6	42
93	r-process Enrichment of the Ultra-faint Dwarf Galaxies by Fast-merging Double-neutron Stars. Astrophysical Journal, 2019, 872, 105.	1.6	42
94	POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A*. Astrophysical Journal Letters, 2014, 786, L12.	3.0	41
95	A Hidden Friend for the Galactic Center Black Hole, Sgr A*. Astrophysical Journal Letters, 2020, 888, L8.	3.0	41
96	TOOLS FOR DISSECTING SUPERNOVA REMNANTS OBSERVED WITH <i>CHANDRA</i> : METHODS AND APPLICATION TO THE GALACTIC REMNANT W49B. Astrophysical Journal, 2009, 691, 875-893.	1.6	40
97	CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS. Astrophysical Journal, 2013, 771, 14.	1.6	39
98	ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES. Astrophysical Journal, 2013, 762, 37.	1.6	39
99	Simulating black hole white dwarf encounters. Computer Physics Communications, 2008, 179, 184-189.	3.0	38
100	Black Hole Formation in Fallback Supernova and the Spins of LIGO Sources. Astrophysical Journal Letters, 2018, 862, L3.	3.0	38
101	Carbon star formation as seen through the non-monotonic initial–final mass relation. Nature Astronomy, 2020, 4, 1102-1110.	4.2	38
102	GRB 990123: Evidence that the Gamma Rays Come from a Central Engine. Astrophysical Journal, 1999, 518, L73-L76.	1.6	37
103	Updated parameter estimates for GW190425 using astrophysical arguments and implications for the electromagnetic counterpart. Monthly Notices of the Royal Astronomical Society, 2020, 494, 190-198.	1.6	37
104	Double-peaked Balmer Emission Indicating Prompt Accretion Disk Formation in an X-Ray Faint Tidal Disruption Event. Astrophysical Journal, 2020, 903, 31.	1.6	37
105	Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions. Astrophysical Journal, 2017, 846, 36.	1.6	36
106	The Evolution of Binaries in a Gaseous Medium: Three-dimensional Simulations of Binary Bondi–Hoyle–Lyttleton Accretion. Astrophysical Journal, 2019, 884, 22.	1.6	36
107	Low-mass White Dwarfs with Hydrogen Envelopes as a Missing Link in the Tidal Disruption Menu. Astrophysical Journal, 2017, 841, 132.	1.6	36
108	Stellar Tidal Disruption Events with Abundances and Realistic Structures (STARS): Library of Fallback Rates. Astrophysical Journal, 2020, 905, 141.	1.6	36

#	Article	IF	CITATIONS
109	TWO MASSIVE WHITE DWARFS FROM NGC 2323 AND THE INITIAL–FINAL MASS RELATION FOR PROGENITORS OF 4–6.5 M _⊙ *. Astrophysical Journal, 2016, 818, 84.	1.6	35
110	The Fate of the Merger Remnant in GW170817 and Its Imprint on the Jet Structure. Astrophysical Journal, 2021, 908, 152.	1.6	35
111	WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?. Astrophysical Journal, 2012, 748, 97.	1.6	34
112	A Trend in the Effective Spin Distribution of LIGO Binary Black Holes with Mass. Astrophysical Journal, 2020, 894, 129.	1.6	34
113	Off-axis afterglow light curves and images from 2D hydrodynamic simulations of double-sided GRB jets in a stratified external medium. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2711-2720.	1.6	32
114	Thermal and non-thermal emission from the cocoon of a gamma-ray burst jet. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4553-4564.	1.6	32
115	A Stringent Limit on the Mass Production Rate of r-process Elements in the Milky Way. Astrophysical Journal, 2018, 860, 89.	1.6	32
116	Was GRB 990123 a unique optical flash?. Monthly Notices of the Royal Astronomical Society, 2002, 330, L24-L28.	1.6	31
117	The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source. Astrophysical Journal Letters, 2017, 848, L26.	3.0	31
118	THE MORPHOLOGY AND DYNAMICS OF JET-DRIVEN SUPERNOVA REMNANTS: THE CASE OF W49B. Astrophysical Journal Letters, 2014, 781, L26.	3.0	30
119	Constraining Collapsar r-process Models through Stellar Abundances. Astrophysical Journal Letters, 2019, 877, L24.	3.0	30
120	Common Envelope Wind Tunnel: The Effects of Binary Mass Ratio and Implications for the Accretion-driven Growth of LIGO Binary Black Holes. Astrophysical Journal, 2020, 897, 130.	1.6	29
121	Radio and X-Ray Observations of the Luminous Fast Blue Optical Transient AT 2020xnd. Astrophysical Journal, 2022, 926, 112.	1.6	29
122	Iron KÎ \pm Emission from X-Ray Reflection: Predictions for Gamma-Ray Burst Models. Astrophysical Journal, 2001, 559, L83-L86.	1.6	28
123	EXTERNAL MASS ACCUMULATION ONTO CORE POTENTIALS: IMPLICATIONS FOR STAR CLUSTERS, GALAXIES, AND GALAXY CLUSTERS. Astrophysical Journal, 2011, 735, 25.	1.6	27
124	A detailed study of the optical attenuation of gamma-ray bursts in the Swift era. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2919-2936.	1.6	26
125	The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries. Astrophysical Journal Letters, 2017, 846, L15.	3.0	25
126	Tidal Disruptions of Main-sequence Stars of Varying Mass and Age: Inferences from the Composition of the Fallback Material. Astrophysical Journal, 2018, 857, 109.	1.6	25

#	Article	IF	CITATIONS
127	Tidal Disruptions of Stars by Binary Black Holes: Modifying the Spin Magnitudes and Directions of LIGO Sources in Dense Stellar Environments. Astrophysical Journal, 2019, 877, 56.	1.6	25
128	Distinguishing Tidal Disruption Events from Impostors. Space Science Reviews, 2021, 217, 1.	3.7	25
129	TRANSPORT AND MIXING OF r-PROCESS ELEMENTS IN NEUTRON STAR BINARY MERGER BLAST WAVES. Astrophysical Journal, 2016, 830, 12.	1.6	24
130	The Birthplace of Gamma-Ray Bursts: Abundance Gradients and Constraints on Progenitors. Astrophysical Journal, 2002, 565, L9-L12.	1.6	23
131	HALO RETENTION AND EVOLUTION OF COALESCING COMPACT BINARIES IN COSMOLOGICAL SIMULATIONS OF STRUCTURE FORMATION: IMPLICATIONS FOR SHORT GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 705, L186-L190.	1.6	23
132	INITIAL–FINAL MASS RELATION FOR 3 TO 4 <i>M</i> _⊙ PROGENITORS OF WHITE DWARFS FROM THE SINGLE CLUSTER NGC 2099. Astrophysical Journal, 2015, 807, 90.	1.6	23
133	No snowplough mechanism during the rapid hardening of supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L65-L69.	1.2	22
134	Measurement of the Core-collapse Progenitor Mass Distribution of the Small Magellanic Cloud. Astrophysical Journal, 2019, 871, 64.	1.6	22
135	A multiwavelength analysis of a collection of short-duration GRBs observed between 2012 and 2015. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5294-5318.	1.6	22
136	What determines the structure of short gamma-ray burst jets?. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4363-4371.	1.6	22
137	Does GW190425 Require an Alternative Formation Pathway than a Fast-merging Channel?. Astrophysical Journal, 2020, 900, 13.	1.6	22
138	Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A. Astrophysical Journal, 2019, 881, 12.	1.6	21
139	A Novel Approach to Constrain Rotational Mixing and Convective-core Overshoot in Stars Using the Initial–Final Mass Relation. Astrophysical Journal Letters, 2019, 871, L18.	3.0	21
140	THE HYDRODYNAMICS OF GAMMA-RAY BURST REMNANTS. Astrophysical Journal, 2010, 716, 1028-1039.	1.6	20
141	Evidence for Cosmic-Ray Escape in the Small Magellanic Cloud Using Fermi Gamma Rays. Astrophysical Journal, 2018, 867, 44.	1.6	20
142	The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star–Black Hole Merger GW190814. Astrophysical Journal, 2021, 923, 258.	1.6	19
143	Performance and calibration of H2RG detectors and SIDECAR ASICs for the RATIR camera. Proceedings of SPIE, 2012, , .	0.8	18
144	HAPPY BIRTHDAY <i>SWIFT</i> : ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW. Astrophysical Journal, 2015, 812, 122.	1.6	18

#	Article	IF	Citations
145	DISCOVERY OF THE CANDIDATE OFF-NUCLEAR ULTRASOFT HYPER-LUMINOUS X-RAY SOURCE 3XMM J141711.1+522541. Astrophysical Journal, 2016, 821, 25.	1.6	18
146	Probing the black hole merger history in clusters using stellar tidal disruptions. Physical Review D, 2019, 100, .	1.6	18
147	Thermal Evolution of Neo-neutron Stars. I. Envelopes, Eddington Luminosity Phase, and Implications for GW170817. Astrophysical Journal, 2020, 888, 97.	1.6	18
148	Probing the progenitors of spinning binary black-hole mergers with long gamma-ray bursts. Astronomy and Astrophysics, 2022, 657, L8.	2.1	18
149	CONSTRAINING EXPLOSION TYPE OF YOUNG SUPERNOVA REMNANTS USING 24 \hat{l}_4 m EMISSION MORPHOLOGY. Astrophysical Journal Letters, 2013, 771, L38.	3.0	17
150	IDENTIFICATION OF A JET-DRIVEN SUPERNOVA REMNANT IN THE SMALL MAGELLANIC CLOUD: POSSIBLE EVIDENCE FOR THE ENHANCEMENT OF BIPOLAR EXPLOSIONS AT LOW METALLICITY. Astrophysical Journal, 2014, 788, 5.	1.6	17
151	AN ULTRAMASSIVE 1.28 M _⊙ WHITE DWARF IN NGC 2099*. Astrophysical Journal Letters, 2016, 820, L18.	3.0	17
152	Photometric Observations of Supernova 2013cq Associated with GRB 130427A. Astrophysical Journal, 2017, 837, 116.	1.6	17
153	Discovery of a Fast Iron Low-ionization Outflow in the Early Evolution of the Nearby Tidal Disruption Event AT 2019qiz. Astrophysical Journal, 2021, 917, 9.	1.6	17
154	HARM3D+NUC: A New Method for Simulating the Post-merger Phase of Binary Neutron Star Mergers with GRMHD, Tabulated EOS, and Neutrino Leakage. Astrophysical Journal, 2021, 919, 95.	1.6	17
155	Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2777-2797.	1.6	17
156	Evidence for the Preferential Disruption of Moderately Massive Stars by Supermassive Black Holes. Astrophysical Journal, 2022, 924, 70.	1.6	17
157	Bondi–Hoyle–Lyttleton Accretion onto Star Clusters. Astrophysical Journal, 2019, 876, 142.	1.6	16
158	The Landscape of Galaxies Harboring Changing-look Active Galactic Nuclei in the Local Universe. Astrophysical Journal Letters, 2021, 907, L21.	3.0	16
159	A Carbon/Oxygen-dominated Atmosphere Days after Explosion for the "Super-Chandrasekhar―Type Ia SN 2020esm. Astrophysical Journal, 2022, 927, 78.	1.6	15
160	Did GW170817 Harbor a Pulsar?. Astrophysical Journal Letters, 2019, 883, L6.	3.0	14
161	An Energy Inventory of Tidal Disruption Events. Astrophysical Journal, 2021, 906, 101.	1.6	13
162	Winds in Star Clusters Drive Kolmogorov Turbulence. Astrophysical Journal Letters, 2020, 899, L30.	3.0	13

#	Article	IF	Citations
163	Radiogenic Heating and Its Influence on Rocky Planet Dynamos and Habitability. Astrophysical Journal Letters, 2020, 903, L37.	3.0	13
164	The Combined Effects of Two-body Relaxation Processes and the Eccentric Kozai–Lidov Mechanism on the Extreme-mass-ratio Inspirals Rate. Astrophysical Journal Letters, 2022, 927, L18.	3.0	13
165	Common Envelope Wind Tunnel: Range of Applicability and Self-similarity in Realistic Stellar Envelopes. Astrophysical Journal, 2020, 899, 77.	1.6	12
166	Fallback Supernova Assembly of Heavy Binary Neutron Stars and Light Black Hole–Neutron Star Pairs and the Common Stellar Ancestry of GW190425 and GW200115. Astrophysical Journal Letters, 2021, 920, L17.	3.0	12
167	Stellar wind retention and expulsion in massive star clusters. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2794-2811.	1.6	11
168	GRB 180620A: Evidence for Late-time Energy Injection. Astrophysical Journal, 2019, 887, 254.	1.6	11
169	X-Ray Fluorescence from Super-Eddington Accreting Black Holes. Astrophysical Journal Letters, 2019, 884, L21.	3.0	11
170	Constraining delay time distribution of binary neutron star mergers from host galaxy properties. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5220-5229.	1.6	11
171	On the Maximum Stellar Rotation to form a Black Hole without an Accompanying Luminous Transient. Astrophysical Journal Letters, 2020, 901, L24.	3.0	11
172	IDENTIFYING HIGH-REDSHIFT GAMMA-RAY BURSTS WITH RATIR. Astronomical Journal, 2014, 148, 2.	1.9	9
173	THE ROLE OF NUCLEAR STAR CLUSTERS IN ENHANCING SUPERMASSIVE BLACK HOLE FEEDING RATES DURING GALAXY MERGERS. Astrophysical Journal, 2015, 803, 81.	1.6	9
174	The Effects of Metallicity and Abundance Pattern of the ISM on Supernova Feedback. Astrophysical Journal, 2020, 896, 66.	1.6	9
175	Tidal disruption events in the first billion years of a galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3944-3956.	1.6	9
176	DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS. Astrophysical Journal Letters, 2014, 790, L3.	3.0	8
177	The Stars in M15 Were Born with the r-process*. Astrophysical Journal Letters, 2020, 891, L13.	3.0	8
178	Follow-up Observations of the Prolonged, Super-Eddington, Tidal Disruption Event Candidate 3XMM J150052.0+015452: the Slow Decline Continues. Astrophysical Journal Letters, 2022, 924, L35.	3.0	8
179	Modeling the Prompt Optical Emission of GRB 180325A: The Evolution of a Spike from the Optical to Gamma Rays. Astrophysical Journal, 2021, 908, 39.	1.6	7
180	The Art of Modeling Stellar Mergers and the Case of the B[e] Supergiant R4 in the Small Magellanic Cloud. Astrophysical Journal, 2020, 901, 44.	1.6	7

#	Article	IF	CITATIONS
181	GAS ACCRETION BY STAR CLUSTERS AND THE FORMATION OF ULTRALUMINOUS X-RAY SOURCES FROM CUSPS OF COMPACT REMNANTS. Astrophysical Journal, 2009, 705, L153-L157.	1.6	6
182	Modelling gas evacuation mechanisms in present-day globular clusters: stellar winds from evolved stars and pulsar heating. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4602-4614.	1.6	5
183	GRB 191016A: The onset of the forward shock and evidence of late energy injection. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6205-6217.	1.6	5
184	Mergers prompted by dynamics in compact, multiple-star systems: a stellar-reduction case for the massive triple TIC 470710327. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 515, L50-L55.	1.2	5
185	Jets and gamma-ray burst unification schemes. , 2012, , 215-250.		3
186	LB-1 Is Inconsistent with the X-Ray Source Population and Pulsar–Black Hole Binary Searches in the Milky Way. Astrophysical Journal, 2020, 901, 116.	1.6	3
187	Towards Improving the Prospects for Coordinated Gravitational-Wave and Electromagnetic Observations. Proceedings of the International Astronomical Union, 2011, 7, 358-360.	0.0	2
188	Testing the Momentum-driven Supernova Feedback Paradigm in M31. Astrophysical Journal, 2022, 928, 54.	1.6	2
189	Illuminating Black Hole Subsystems in Young Star Clusters. Astrophysical Journal, 2021, 917, 36.	1.6	1
190	Transforming Gas Giant Planets into Smaller Objects Through Tidal Disruption. Proceedings of the International Astronomical Union, 2012, 8, 356-361.	0.0	0