
Ilia V Yampolsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405959/publications.pdf

Version: 2024-02-01

ILLA V YAMPOLSKY

#	Article	IF	CITATIONS
1	1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chemical Society Reviews, 2016, 45, 6048-6077.	18.7	238
2	Green fluorescent proteins are light-induced electron donors. Nature Chemical Biology, 2009, 5, 459-461.	3.9	176
3	Conformationally Locked Chromophores as Models of Excited-State Proton Transfer in Fluorescent Proteins. Journal of the American Chemical Society, 2012, 134, 6025-6032.	6.6	164
4	Genetically encodable bioluminescent system from fungi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12728-12732.	3.3	130
5	Fluorescence imaging using synthetic GFP chromophores. Current Opinion in Chemical Biology, 2015, 27, 64-74.	2.8	120
6	Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Reports, 2006, 7, 1006-1012.	2.0	99
7	The Chemical Basis of Fungal Bioluminescence. Angewandte Chemie - International Edition, 2015, 54, 8124-8128.	7.2	89
8	Plants with genetically encoded autoluminescence. Nature Biotechnology, 2020, 38, 944-946.	9.4	89
9	Fucoxanthin production by heterokont microalgae. Algal Research, 2017, 24, 387-393.	2.4	88
10	Synthesis and Properties of the Chromophore of the asFP595 Chromoprotein fromAnemonia sulcataâ€. Biochemistry, 2005, 44, 5788-5793.	1.2	74
11	Mechanism and color modulation of fungal bioluminescence. Science Advances, 2017, 3, e1602847.	4.7	74
12	Redâ€ S hifted Fluorescent Aminated Derivatives of a Conformationally Locked GFP Chromophore. Chemistry - A European Journal, 2014, 20, 13234-13241.	1.7	68
13	The First Mutant of the Aequorea victoria Green Fluorescent Protein That Forms a Red Chromophore. Biochemistry, 2008, 47, 4666-4673.	1.2	67
14	Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal. Chemical Science, 2017, 8, 7138-7142.	3.7	62
15	Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs. Bioorganic Chemistry, 2008, 36, 96-104.	2.0	48
16	A Novel Type of Luciferin from the Siberian Luminous Earthworm <i>Fridericia heliota</i> : Structure Elucidation by Spectral Studies and Total Synthesis. Angewandte Chemie - International Edition, 2014, 53, 5566-5568.	7.2	41
17	Unveiling Structural Motions of a Highly Fluorescent Superphotoacid by Locking and Fluorinating the GFP Chromophore in Solution. Journal of Physical Chemistry Letters, 2017, 8, 5921-5928.	2.1	40
18	Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chemical Communications, 2019, 55, 2537-2540.	2.2	40

ILIA V YAMPOLSKY

#	Article	IF	CITATIONS
19	Bioinspired Fluorescent Dyes Based on a Conformationally Locked Chromophore of the Fluorescent Protein Kaede. European Journal of Organic Chemistry, 2015, 2015, 5716-5721.	1.2	36
20	Tryptophan-based chromophore in fluorescent proteins can be anionic. Scientific Reports, 2012, 2, 608.	1.6	35
21	Bioluminescence chemistry of fireworm <i>Odontosyllis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18911-18916.	3.3	33
22	Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. Journal of Physical Chemistry B, 2019, 123, 3804-3821.	1.2	32
23	Chemical introduction of the green fluorescence: imaging of cysteine cathepsins by an irreversibly locked GFP fluorophore. Organic and Biomolecular Chemistry, 2013, 11, 5913.	1.5	31
24	Novel Mechanism of Bioluminescence: Oxidative Decarboxylation of a Moiety Adjacent to the Light Emitter of <i>Fridericia</i> Luciferin. Angewandte Chemie - International Edition, 2015, 54, 7065-7067.	7.2	31
25	Selected Least Studied but not Forgotten Bioluminescent Systems. Photochemistry and Photobiology, 2017, 93, 405-415.	1.3	30
26	A synthetic approach to GFP chromophore analogs from 3-azidocinnamates. Role of methyl rotors in chromophore photophysics. Chemical Communications, 2013, 49, 5778.	2.2	29
27	A Tale Of Two Luciferins: Fungal and Earthworm New Bioluminescent Systems. Accounts of Chemical Research, 2016, 49, 2372-2380.	7.6	29
28	Docking-guided identification of protein hosts for GFP chromophore-like ligands. Journal of Materials Chemistry C, 2016, 4, 3036-3040.	2.7	29
29	Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochemical and Photobiological Sciences, 2017, 16, 1435-1440.	1.6	28
30	Luciferase of the Japanese syllid polychaete Odontosyllis umdecimdonta. Biochemical and Biophysical Research Communications, 2018, 502, 318-323.	1.0	24
31	Synthesis and Spectral and Chemical Properties of the Yellow Fluorescent Protein zFP538 Chromophore. Biochemistry, 2009, 48, 8077-8082.	1.2	22
32	A Synthetic GFP-like Chromophore Undergoes Base-Catalyzed Autoxidation into Acylimine Red Form. Journal of Organic Chemistry, 2011, 76, 2782-2791.	1.7	20
33	New Class of Blue Animal Pigments Based on Frizzled and Kringle Protein Domains. Journal of Biological Chemistry, 2004, 279, 43367-43370.	1.6	17
34	New bioluminescent coelenterazine derivatives with various C-6 substitutions. Organic and Biomolecular Chemistry, 2017, 15, 7008-7018.	1.5	17
35	Structure of the red fluorescent protein from a lancelet (<i>Branchiostoma lanceolatum</i>): a novel GYG chromophore covalently bound to a nearby tyrosine. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1850-1860.	2.5	15
36	Allylic boron and zinc derivatives in synthesis and transformations of nitrogen heterocycles. Pure and Applied Chemistry, 2000, 72, 1641-1644.	0.9	13

ILIA V YAMPOLSKY

#	Article	IF	CITATIONS
37	Novel condensations of nitroacetic esters with aromatic aldehydes leading to 5-hydroxy-1,2-oxazin-6-ones. Tetrahedron Letters, 2013, 54, 628-629.	0.7	13
38	CompX, a luciferin-related tyrosine derivative from the bioluminescent earthworm Fridericia heliota. Structure elucidation and total synthesis. Tetrahedron Letters, 2014, 55, 460-462.	0.7	13
39	Prolonged bioluminescence imaging in living cells and mice using novel pro-substrates for <i>Renilla</i> luciferase. Organic and Biomolecular Chemistry, 2017, 15, 10238-10244.	1.5	13
40	AsLn2, a luciferin-related modified tripeptide from the bioluminescent earthworm Fridericia heliota. Tetrahedron Letters, 2014, 55, 463-465.	0.7	12
41	Allylboration of functionalized isoquinolines. Journal of Organometallic Chemistry, 2002, 657, 123-128.	0.8	11
42	The Chemical Basis of Fungal Bioluminescence. Angewandte Chemie, 2015, 127, 8242-8246.	1.6	9
43	Novel Peptide Chemistry in Terrestrial Animals: Natural Luciferin Analogues from the Bioluminescent Earthworm <i>Fridericia heliota</i> . Chemistry - A European Journal, 2015, 21, 3942-3947.	1.7	9
44	Chaetopterus variopedatus Bioluminescence: A Review of Light Emission within a Species Complex. Photochemistry and Photobiology, 2020, 96, 768-778.	1.3	9
45	Efficient Synthetic Approach to Fluorescent Oxazole-4-carboxylate Derivatives. Synthetic Communications, 2013, 43, 2337-2342.	1.1	8
46	Nambiscalarane, a novel sesterterpenoid comprising a furan ring, and other secondary metabolites from bioluminescent fungus Neonothopanus nambi. Mendeleev Communications, 2016, 26, 191-192.	0.6	8
47	A Novel Type of Luciferin from the Siberian Luminous Earthworm <i>Fridericia heliota</i> : Structure Elucidation by Spectral Studies and Total Synthesis. Angewandte Chemie, 2014, 126, 5672-5674.	1.6	7
48	Ring-expanding rearrangement of 2-acyl-5-arylidene-3,5-dihydro-4H-imidazol-4-ones in synthesis of flutimide analogs. Tetrahedron, 2014, 70, 3714-3719.	1.0	6
49	Unexpected Coelenterazine Degradation Products of <i>Beroe abyssicola</i> Photoprotein Photoinactivation. Organic Letters, 2021, 23, 6846-6849.	2.4	6
50	Total synthesis of AsLn2 – a luciferin analogue from the Siberian bioluminescent earthworm Fridericia heliota. Mendeleev Communications, 2015, 25, 99-100.	0.6	4
51	Conformationally locked GFP chromophore derivatives as potential fluorescent sensors. Russian Journal of Bioorganic Chemistry, 2016, 42, 453-456.	0.3	4
52	Streptocinnamides A and B, Depsipeptides from <i>Streptomyces</i> sp. KMM 9044. Organic Letters, 2022, 24, 4892-4895.	2.4	4
53	Novel Mechanism of Bioluminescence: Oxidative Decarboxylation of a Moiety Adjacent to the Light Emitter of <i>Fridericia</i> Luciferin. Angewandte Chemie, 2015, 127, 7171-7173.	1.6	3
54	A bioluminescent system of fungi: prospects for application in medical research. Bulletin of Russian State Medical University, 2018, , 74-77.	0.3	2

ILIA V YAMPOLSKY

#	Article	IF	CITATIONS
55	Novel gigawatt power modulator for RF sources. , 0, , .		1
56	Unusual transformations of anthranilic acid imidazolides. Chemistry of Heterocyclic Compounds, 2012, 48, 1108-1110.	0.6	1
57	Allylboration of Functionalized Isoquinolines ChemInform, 2003, 34, no-no.	0.1	0
58	Titelbild: The Chemical Basis of Fungal Bioluminescence (Angew. Chem. 28/2015). Angewandte Chemie, 2015, 127, 8113-8113.	1.6	0
59	Frontispiece: Novel Peptide Chemistry in Terrestrial Animals: Natural Luciferin Analogues from the Bioluminescent EarthwormFridericia heliota. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	Ο
60	Synthesis of Panal Terpenoid Core. Synlett, 2017, 28, 583-588.	1.0	0
61	Bioluminescent imaging: new opportunities. Bulletin of Russian State Medical University, 2018, , 87-90.	0.3	0
62	Luminous Fungi. , 2019, , 301-348.		0