Yang Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405564/publications.pdf

Version: 2024-02-01

١			304743	477307	
	29	2,630	22	29	
	papers	citations	h-index	g-index	
	29	29	29	2325	
	2)	23	23	2323	
	all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundamental Research, 2022, 2, 619-628.	3.3	29
2	Selfâ€Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Advanced Materials, 2022, 34, e2200793.	21.0	81
3	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2022, 4, .	11.9	54
4	A Self-Powered Optogenetic System for Implantable Blood Glucose Control. Research, 2022, 2022, .	5.7	7
5	Recent progress in human body energy harvesting for smart bioelectronic system. Fundamental Research, 2021, 1, 364-382.	3.3	106
6	O3 oxidation combined with semi-dry method for simultaneous desulfurization and denitrification of sintering/pelletizing flue gas. Journal of Environmental Sciences, 2021, 104, 253-263.	6.1	27
7	Stretchable, Self-Healing, and Skin-Mounted Active Sensor for Multipoint Muscle Function Assessment. ACS Nano, 2021, 15, 10130-10140.	14.6	75
8	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	21.0	85
9	Simultaneous Removal of SO ₂ and NO _{<i>x</i>} Using Steel Slag Slurry Combined with Ozone Oxidation. ACS Omega, 2021, 6, 28804-28812.	3.5	5
10	Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors. Small, 2020, 16, e1904758.	10.0	107
11	Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting. Nano Energy, 2020, 69, 104417.	16.0	47
12	Density functional theory (DFT) studies of vanadium-titanium based selective catalytic reduction (SCR) catalysts. Journal of Environmental Sciences, 2020, 90, 119-137.	6.1	31
13	Reversible Conversion between Schottky and Ohmic Contacts for Highly Sensitive, Multifunctional Biosensors. Advanced Functional Materials, 2020, 30, 1907999.	14.9	61
14	Simultaneous removal of NOx and SO2 using two-stage O3 oxidation combined with Ca(OH)2 absorption. Korean Journal of Chemical Engineering, 2020, 37, 1907-1914.	2.7	16
15	Self-powered wearable electronics. Wearable Technologies, 2020, 1, .	3.1	36
16	Triboelectric-polarization-enhanced high sensitive ZnO UV sensor. Nano Today, 2020, 33, 100873.	11.9	33
17	A wearable noncontact freeâ€rotating hybrid nanogenerator for selfâ€powered electronics. InformaÄnÃ- Materiály, 2020, 2, 1191-1200.	17.3	71
18	Stretchable Sensors: Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors (Small 7/2020). Small, 2020, 16, 2070037.	10.0	4

#	Article	IF	CITATIONS
19	A Batteryâ€Like Selfâ€Charge Universal Module for Motional Energy Harvest. Advanced Energy Materials, 2019, 9, 1901875.	19.5	68
20	Cancer Therapy: Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator (Adv. Funct. Mater. 41/2019). Advanced Functional Materials, 2019, 29, 1970285.	14.9	17
21	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1808640.	14.9	92
22	A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10, 2695.	12.8	413
23	Body-Integrated Self-Powered System for Wearable and Implantable Applications. ACS Nano, 2019, 13, 6017-6024.	14.6	142
24	Symbiotic cardiac pacemaker. Nature Communications, 2019, 10, 1821.	12.8	429
25	Bioabsorbable Capacitors: Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics (Adv. Sci. 6/2019). Advanced Science, 2019, 6, 1970035.	11.2	2
26	Transcatheter Selfâ€Powered Ultrasensitive Endocardial Pressure Sensor. Advanced Functional Materials, 2019, 29, 1807560.	14.9	181
27	Endocardial Pressure Sensors: Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor (Adv. Funct. Mater. 3/2019). Advanced Functional Materials, 2019, 29, 1970017.	14.9	5
28	Wearable Wire-Shaped Symmetric Supercapacitors Based on Activated Carbon-Coated Graphite Fibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34302-34310.	8.0	46
29	Selfâ€Powered Pulse Sensor for Antidiastole of Cardiovascular Disease. Advanced Materials, 2017, 29, 1703456.	21.0	360