List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405482/publications.pdf

Version: 2024-02-01

		567281	642732
23	1,119	15	23
papers	citations	h-index	g-index
22	22	22	1710
23	23	23	1710
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon, 2013, 51, 156-163.	10.3	311
2	Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance. Journal of Colloid and Interface Science, 2015, 448, 508-516.	9.4	246
3	Removal of Cu2+, Cd2+ and Pb2+ from aqueous solutions by magnetic alginate microsphere based on Fe3O4/MgAl-layered double hydroxide. Journal of Colloid and Interface Science, 2018, 532, 474-484.	9.4	118
4	Effects of copper and aluminum on the adsorption of sulfathiazole and tylosin on peat and soil. Environmental Pollution, 2014, 184, 579-585.	7.5	55
5	Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin. Scientific Reports, 2015, 5, 9944.	3.3	50
6	Room-temperature fabrication of bismuth oxybromide/oxyiodide photocatalyst and efficient degradation of phenolic pollutants under visible light. Journal of Hazardous Materials, 2018, 358, 20-32.	12.4	49
7	Adsorption and photocatalytic reduction of aqueous Cr(VI) by Fe3O4-ZnAl-layered double hydroxide/TiO2 composites. Journal of Colloid and Interface Science, 2020, 562, 493-501.	9.4	44
8	Kinetics and thermodynamics studies for bisphenol S adsorption on reduced graphene oxide. RSC Advances, 2016, 6, 60145-60151.	3.6	36
9	Synergistic adsorption and photocatalytic reduction of Cr(VI) using Zn-Al-layered double hydroxide and TiO2 composites. Applied Surface Science, 2019, 492, 487-496.	6.1	35
10	Sorption of Anionic Metsulfuron-Methyl and Cationic Difenzoquat on Peat and Soil As Affected by Copper. Environmental Science & Environmental Science	10.0	24
11	Efficient removal of bisphenol S by non-radical activation of peroxydisulfate in the presence of nano-graphite. Water Research, 2021, 201, 117288.	11.3	24
12	Sorption of aromatic hydrocarbons onto montmorillonite as affected by norfloxacin. Journal of Hazardous Materials, 2012, 203-204, 137-144.	12.4	22
13	Transformation of hydroquinone to benzoquinone mediated by reduced graphene oxide in aqueous solution. Carbon, 2015, 89, 74-81.	10.3	20
14	Reduced graphene oxide-catalyzed oxidative coupling reaction of 4-methoxyphenol in aerobic aqueous solution. Carbon, 2017, 121, 418-425.	10.3	18
15	Modeling of Flame Retardants in Typical Urban Indoor Environments in China during 2010–2030: Influence of Policy and Decoration and Implications for Human Exposure. Environmental Science & Environmental	10.0	18
16	Accumulation and influencing factors of novel brominated flame retardants in soil and vegetation from Fildes Peninsula, Antarctica. Science of the Total Environment, 2021, 756, 144088.	8.0	12
17	Novel brominated flame retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: Occurrence, distribution and influencing factors. Environmental Pollution, 2021, 291, 118252.	7.5	11
18	Adsorption and desorption of 2,4,6-trichlorophenol onto and from ash as affected by Ag+, Zn2+, and Al3+. Environmental Science and Pollution Research, 2014, 21, 2002-2008.	5 . 3	7

#	Article	IF	CITATION
19	Oxidative transformation of 1-naphthylamine in water mediated by different environmental black carbons. Journal of Hazardous Materials, 2021, 403, 123594.	12.4	5
20	First report on hydroxylated and methoxylated polybrominated diphenyl ethers in terrestrial environment from the Arctic and Antarctica. Journal of Hazardous Materials, 2022, 424, 127644.	12.4	5
21	Synergetic mediation of reduced graphene oxide and Cu(II) on the oxidation of 2-naphthol in water. Environmental Pollution, 2019, 252, 689-696.	7.5	4
22	Formation of hydroxylated polybrominated diphenyl ethers and hydroxylated polybrominated biphenyls during the adsorption of bromophenols by reduced graphene oxide. Chemical Engineering Journal, 2019, 378, 122134.	12.7	3
23	Substituent effects on the oxidation reactions of 4-nitrophenol, phenol, 4-methylpheol, and 4-methoxyphenol mediated by reduced graphene oxide in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 35-41.	4.7	2