Hangbo Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405432/publications.pdf Version: 2024-02-01

HANCRO YUE

#	Article	IF	CITATIONS
1	Preparation and characterisation of bioplastics made from cottonseed protein. Green Chemistry, 2012, 14, 2009.	4.6	85
2	Electrospun Silver Nanoparticles-Embedded Feather Keratin/Poly(vinyl alcohol)/Poly(ethylene oxide) Antibacterial Composite Nanofibers. Polymers, 2020, 12, 305.	2.0	53
3	Fractal carbon nanotube fibers with mesoporous crystalline structure. Carbon, 2017, 122, 47-53.	5.4	30
4	On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement. Green Chemistry, 2020, 22, 8642-8655.	4.6	29
5	DPD studies on mixed micelles self-assembled from MPEG-PDEAEMA and MPEG-PCL for controlled doxorubicin release. Colloids and Surfaces B: Biointerfaces, 2019, 178, 56-65.	2.5	28
6	Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics. RSC Advances, 2014, 4, 32320.	1.7	25
7	Real time monitoring of click chemistry self-healing in polymer composites. Journal of Materials Chemistry A, 2014, 2, 3881.	5.2	21
8	Synthesis of thermochemically stable tetraphenyladamantane-based microporous polymers as gas storage materials. RSC Advances, 2017, 7, 16174-16180.	1.7	20
9	Macroscopic CNT fibres inducing non-epitaxial nucleation and orientation of semicrystalline polymers. Scientific Reports, 2015, 5, 16729.	1.6	17
10	Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose, 2019, 26, 4693-4706.	2.4	17
11	pH-Sensitive Mixed Micelles Assembled from PDEAEMA-PPEGMA and PCL-PPEGMA for Doxorubicin Delivery: Experimental and DPD Simulations Study. Pharmaceutics, 2020, 12, 170.	2.0	17
12	A chitosan modified Pt/SiO2 catalyst for the synthesis of 3-poly(ethylene glycol) propyl ether-heptamethyltrisiloxane applied as agricultural synergistic agent. Catalysis Communications, 2018, 104, 118-122.	1.6	16
13	DPD simulations and experimental study on reduction-sensitive polymeric micelles self-assembled from PCL-SS-PPEGMA for doxorubicin controlled release. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111797.	2.5	16
14	Super-microporous silica-supported platinum catalyst for highly regioselective hydrosilylation. Catalysis Communications, 2017, 97, 51-55.	1.6	15
15	Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose. Cellulose, 2022, 29, 5869-5881.	2.4	14
16	Crosslink Polymerization Kinetics and Mechanism of Hydrogels Composed of Acrylic Acid and 2-Acrylamido-2-methylpropane Sulfonic Acid. Chinese Journal of Chemical Engineering, 2011, 19, 285-291.	1.7	12
17	Polycarbonate/Sulfonamide Composites with Ultralow Contents of Halogen-Free Flame Retardant and Desirable Compatibility. Materials, 2020, 13, 3656.	1.3	12
18	Microporous organic polymers based on hexaphenylbiadamantane: Synthesis, ultra-high stability and gas capture. Materials Letters, 2017, 187, 76-79.	1.3	11

ΗΑΝGBO YUE

#	Article	IF	CITATIONS
19	Exceptionally Stable Microporous Organic Frameworks with Rigid Building Units for Efficient Small Gas Adsorption and Separation. ACS Applied Materials & Interfaces, 2020, 12, 7548-7556.	4.0	11
20	Bulk fabrication of porous organic framework polymers on flexible nanofibers and their application for water purification. Reactive and Functional Polymers, 2019, 135, 58-64.	2.0	10
21	Synthesis and luminescence properties of long-chain (2,7-carbazolyl)-adamantane copolymers. Journal of Polymer Research, 2017, 24, 1.	1.2	7
22	Adamantane-Based Micro- and Ultra-Microporous Frameworks for Efficient Small Gas and Toxic Organic Vapor Adsorption. Polymers, 2019, 11, 486.	2.0	7
23	Unveiling the reinforcement effects in cottonseed protein/polycaprolactone blend biocomposites. Composites Science and Technology, 2022, 225, 109480.	3.8	5
24	Understanding the enhancement of Young's modulus of macroscopic carbon nanotube fibers after polymer infiltration. AIP Conference Proceedings, 2019, , .	0.3	3
25	Glandless Cottonseed Protein for Environmentally Friendly Bioplastics. , 0, , .		2
26	Morphology, thermal, and crystallization analysis of polylactic acid in the presence of carbon nanotube fibers with tunable fiber loadings through polymer infiltration. Polymer Crystallization, 2019, 2, e10081.	0.5	2
27	Enhancement of thermal stability and photoluminescent performance of blue light emitting material by incorporating adamantane moieties into carbazole system. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 176-182.	1.2	1
28	Bio-based carbonaceous composite materials from epoxidised linseed oil, bio-derived curing agent and starch with controllable functionality. RSC Advances, 2017, 7, 24282-24290.	1.7	0