Xiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405044/publications.pdf Version: 2024-02-01

XIANC LUI

#	Article	IF	CITATIONS
1	A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation. Applied Catalysis B: Environmental, 2019, 256, 117872.	20.2	136
2	A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Applied Surface Science, 2017, 396, 58-66.	6.1	81
3	Fabrication of a Z-Scheme {001}/{110} Facet Heterojunction in BiOCl to Promote Spatial Charge Separation. ACS Applied Materials & amp; Interfaces, 2020, 12, 31532-31541.	8.0	67
4	A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C ₃ N ₄ with highly enhanced photocatalytic activity under simulated sunlight. New Journal of Chemistry, 2018, 42, 12180-12187.	2.8	66
5	Hydrothermal synthesis of graphene/Fe ³⁺ -doped TiO ₂ nanowire composites with highly enhanced photocatalytic activity under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 15214-15224.	10.3	64
6	Enhancing the photocatalytic degradation of salicylic acid by using molecular imprinted S-doped TiO2 under simulated solar light. Ceramics International, 2014, 40, 8863-8867.	4.8	41
7	One-step synthesis of Bi2MoO6/reduced graphene oxide aerogel composite with enhanced adsorption and photocatalytic degradation performance for methylene blue. Materials Science in Semiconductor Processing, 2018, 88, 214-223.	4.0	39
8	1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light. Applied Surface Science, 2021, 556, 149768.	6.1	38
9	Facile synthesis of N–F codoped and molecularly imprinted TiO2 for enhancing photocatalytic degradation of target contaminants. Applied Surface Science, 2016, 364, 829-836.	6.1	35
10	A novel visible-light-driven ternary Ag@Ag ₂ O/BiOCl Z-scheme photocatalyst with enhanced removal efficiency of RhB. New Journal of Chemistry, 2019, 43, 13929-13937.	2.8	25
11	One-pot conversion of furfural to gamma-valerolactone in the presence of multifunctional zirconium alizarin red S hybrid. Applied Catalysis A: General, 2021, 621, 118203.	4.3	24
12	A convenient approach of MIP/Co–TiO ₂ nanocomposites with highly enhanced photocatalytic activity and selectivity under visible light irradiation. RSC Advances, 2016, 6, 69326-69333.	3.6	23
13	Synthesis of Mo-doped TiO ₂ nanowires/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. RSC Advances, 2016, 6, 23809-23815.	3.6	23
14	A facile solvothermal approach for the synthesis of novel W-doped TiO ₂ nanoparticles/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. New Journal of Chemistry, 2017, 41, 13382-13390.	2.8	22
15	A novel ternary MQDs/NCDs/TiO ₂ nanocomposite that collaborates with activated persulfate for efficient RhB degradation under visible light irradiation. New Journal of Chemistry, 2021, 45, 1327-1338.	2.8	17
16	One-pot synthesis of 3D porous Bi7O9I3/N-doped graphene aerogel with enhanced photocatalytic activity for organic dye degradation in wastewater. Ceramics International, 2021, 47, 19556-19566.	4.8	17
17	Enantioselective reduction of acetophenone analogues using carrot and celeriac enzymes system. Chinese Chemical Letters, 2010, 21, 305-308.	9.0	14
18	ASYMMETRIC REDUCTION OF AROMATIC KETONES BY THE BAKER'S YEAST IN ORGANIC SOLVENT SYSTEMS. Synthetic Communications, 2001, 31, 1521-1526.	2.1	10

XIANG LIU

#	Article	IF	CITATIONS
19	Asymmetric Hydrosilylation of Aromatic Ketones Catalyzed by an Economical and Effective Copperâ€Diphosphine Catalytic System in Air. Chinese Journal of Chemistry, 2015, 33, 578-582.	4.9	10
20	One-pot hydrothermal synthesis of CuBi ₂ O ₄ /BiOCl p–n heterojunction with enhanced photocatalytic performance for the degradation of tetracycline hydrochloride under visible light irradiation. New Journal of Chemistry, 2022, 46, 2898-2907.	2.8	9
21	Asymmetric reduction of α-hydroxy aromatic ketones to chiral aryl vicinal diols using carrot enzymes system. Chinese Chemical Letters, 2012, 23, 635-638.	9.0	8
22	New insights into the structure and catalytic performance of alizarin–zirconium hybrids for Meerwein–Ponndorf–Verley reductions: first-principles approach. Sustainable Energy and Fuels, 2021, 5, 4069-4079.	4.9	7
23	MOF-5-derived ZnO–C nanoparticles combined with <i>α</i> -MnO ₂ for the efficient degradation of tetracycline under visible light. New Journal of Chemistry, 2022, 46, 7346-7354.	2.8	5
24	Microwave-assisted synthesis of α-hydroxy aromatic ketones from α-bromo aromatic ketones in water. Chinese Chemical Letters, 2011, 22, 53-56.	9.0	3