Nils Daniel Forkert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical Activity Participation and Barriers for Children and Adolescents with Disabilities. International Journal of Disability Development and Education, 2022, 69, 204-216.	1.1	8
2	Age-dependent Intracranial Artery Morphology in Healthy Children. Clinical Neuroradiology, 2022, 32, 49-56.	1.9	1
3	Magnetic particle imaging for assessment of cerebral perfusion and ischemia. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1757.	6.1	11
4	Lesion-symptom mapping with NIHSS sub-scores in ischemic stroke patients. Stroke and Vascular Neurology, 2022, 7, 124-131.	3.3	8
5	A systematic comparison of generative models for medical images. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1213-1224.	2.8	5
6	Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions. Human Brain Mapping, 2022, 43, 2554-2566.	3.6	23
7	A Deep Invertible 3-D Facial Shape Model for Interpretable Genetic Syndrome Diagnosis. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3229-3239.	6.3	6
8	Localized Statistical Shape Models for Large-Scale Problems With Few Training Data. IEEE Transactions on Biomedical Engineering, 2022, 69, 2947-2957.	4.2	1
9	Invertible Modeling of Bidirectional Relationships in Neuroimaging With Normalizing Flows: Application to Brain Aging. IEEE Transactions on Medical Imaging, 2022, 41, 2331-2347.	8.9	6
10	Sex Differences in Adult Facial Three-Dimensional Morphology: Application to Gender-Affirming Facial Surgery. Facial Plastic Surgery and Aesthetic Medicine, 2022, 24, S-24-S-30.	0.9	19
11	A comparative analysis of the impact of data distribution on distributed learning with a traveling model for brain age prediction. , 2022, , .		2
12	Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients. , 2022, , .		1
13	Stroke lesion localization in 3D MRI datasets with deep reinforcement learning. , 2022, , .		Ο
14	A fully convolutional neural network for explainable classification of attention deficit hyperactivity disorder. , 2022, , .		4
15	Association of stroke lesion shape with newly detected atrial fibrillation – Results from the MonDAFIS study. European Stroke Journal, 2022, 7, 230-237.	5.5	2
16	MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses. Scientific Data, 2022, 9, .	5.3	3
17	Artificial intelligence in stroke imaging: Current and future perspectives. Clinical Imaging, 2021, 69, 246-254.	1.5	43
18	Bone and joint enhancement filtering: Application to proximal femur segmentation from uncalibrated computed tomography datasets. Medical Image Analysis, 2021, 67, 101887.	11.6	5

#	Article	IF	CITATIONS
19	Towards Self-explainable Classifiers andÂRegressors in Neuroimaging withÂNormalizing Flows. Lecture Notes in Computer Science, 2021, , 23-33.	1.3	4
20	Investigating the relationship between the SNCA gene and cognitive abilities in idiopathic Parkinson's disease using machine learning. Scientific Reports, 2021, 11, 4917.	3.3	8
21	Wnt Signaling Drives Correlated Changes in Facial Morphology and Brain Shape. Frontiers in Cell and Developmental Biology, 2021, 9, 644099.	3.7	9
22	Mild Behavioral Impairment and Subjective Cognitive Decline Predict Cognitive and Functional Decline. Journal of Alzheimer's Disease, 2021, 80, 459-469.	2.6	77
23	Combined Atlas and Convolutional Neural Network-Based Segmentation of the Hippocampus from MRI According to the ADNI Harmonized Protocol. Sensors, 2021, 21, 2427.	3.8	11
24	Utility of Multi-Modal MRI for Differentiating of Parkinson's Disease and Progressive Supranuclear Palsy Using Machine Learning. Frontiers in Neurology, 2021, 12, 648548.	2.4	25
25	Machine learning for precision medicine. Genome, 2021, 64, 416-425.	2.0	175
26	Neural correlates of the impulse dyscontrol domain of mild behavioral impairment. International Journal of Geriatric Psychiatry, 2021, 36, 1398-1406.	2.7	47
27	Machine Learning-Based Prediction of Brain Tissue Infarction in Patients With Acute Ischemic Stroke Treated With Theophylline as an Add-On to Thrombolytic Therapy: A Randomized Clinical Trial Subgroup Analysis. Frontiers in Neurology, 2021, 12, 613029.	2.4	5
28	Prediction of Clinical Outcomes in Acute Ischaemic Stroke Patients: A Comparative Study. Frontiers in Neurology, 2021, 12, 663899.	2.4	8
29	An Analysis of the Vulnerability of Two Common Deep Learning-Based Medical Image Segmentation Techniques to Model Inversion Attacks. Sensors, 2021, 21, 3874.	3.8	12
30	Influence of cardiovascular risk-factors on morphological changes of cerebral arteries in healthy adults across the life span. Scientific Reports, 2021, 11, 12236.	3.3	11
31	Perfusion Changes in Acute Stroke Treated with Theophylline as an Add-on to Thrombolysis. Clinical Neuroradiology, 2021, , 1.	1.9	0
32	Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using In Silico Modeling Based on Machine Learning: A Proof-of-Principle. Biomedicines, 2021, 9, 1357.	3.2	7
33	fMRI-Informed EEG for brain mapping of imagined lower limb movement: Feasibility of a brain computer interface. Journal of Neuroscience Methods, 2021, 363, 109339.	2.5	6
34	Identifying Thrombus on Non-Contrast CT in Patients with Acute Ischemic Stroke. Diagnostics, 2021, 11, 1919.	2.6	5
35	Integrating expert knowledge for dementia risk prediction in individuals with mild cognitive impairment (MCI): a study protocol. BMJ Open, 2021, 11, e051185.	1.9	3
36	Modeling Neurodegeneration in silico With Deep Learning. Frontiers in Neuroinformatics, 2021, 15, 748370.	2.5	5

#	Article	IF	CITATIONS
37	Early Diffusion Magnetic Resonance Imaging Changes in Normal-Appearing Brain in Pediatric Moyamoya Disease. Neurosurgery, 2020, 86, 530-537.	1.1	9
38	lschemic lesion growth in acute stroke: Water uptake quantification distinguishes between edema and tissue infarct. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 823-832.	4.3	27
39	Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala. Neuroradiology, 2020, 62, 389-397.	2.2	12
40	Temporal evolution and spatial distribution of quantitative T2 MRI following acute ischemia reperfusion injury. International Journal of Stroke, 2020, 15, 495-506.	5.9	5
41	Dynamic CTA-Derived Perfusion Maps Predict Final Infarct Volume: The Simple Perfusion Reconstruction Algorithm. American Journal of Neuroradiology, 2020, 41, 2034-2040.	2.4	10
42	The Association of Saliva Cytokines and Pediatric Sports-Related Concussion Outcomes. Journal of Head Trauma Rehabilitation, 2020, 35, 354-362.	1.7	7
43	60 Precision Medicine in Developmental Pediatrics: Image-based Classification of Children with Autism Spectrum Disorder using Deep Learning. Paediatrics and Child Health, 2020, 25, e25-e25.	0.6	Ο
44	The Impact of Covariates in Voxel-Wise Lesion-Symptom Mapping. Frontiers in Neurology, 2020, 11, 854.	2.4	7
45	Defining reperfusion post endovascular therapy in ischemic stroke using MR-dynamic contrast enhanced perfusion. British Journal of Radiology, 2020, 93, 20190890.	2.2	2
46	DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes. Frontiers in Neuroscience, 2020, 14, 592352.	2.8	83
47	Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study. NeuroImage: Clinical, 2020, 28, 102508.	2.7	13
48	Association of Pediatric Acute-Onset Neuropsychiatric Syndrome With Microstructural Differences in Brain Regions Detected via Diffusion-Weighted Magnetic Resonance Imaging. JAMA Network Open, 2020, 3, e204063.	5.9	25
49	Automated syndrome diagnosis by three-dimensional facial imaging. Genetics in Medicine, 2020, 22, 1682-1693.	2.4	47
50	Structural integrity of white matter tracts as a predictor of acute ischemic stroke outcome. International Journal of Stroke, 2020, 15, 965-972.	5.9	8
51	Plasma Neurofilament Light: A Marker of Neurodegeneration in Mild Behavioral Impairment. Journal of Alzheimer's Disease, 2020, 76, 1017-1027.	2.6	68
52	Fully Automatic Landmarking of Syndromic 3D Facial Surface Scans Using 2D Images. Sensors, 2020, 20, 3171.	3.8	19
53	A Registration and Deep Learning Approach to Automated Landmark Detection for Geometric Morphometrics. Evolutionary Biology, 2020, 47, 246-259.	1.1	31
54	Age-related differences in cerebral blood flow and cortical thickness with an application to age prediction. Neurobiology of Aging, 2020, 95, 131-142.	3.1	14

#	Article	IF	CITATIONS
55	Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks. Medical Physics, 2020, 47, 4199-4211.	3.0	17
56	In Reply: Early Diffusion Magnetic Resonance Imaging Changes in Normal-Appearing Brain in Pediatric Moyamoya Disease. Neurosurgery, 2020, 87, E436-E437.	1.1	1
57	Automatic Segmentation of Stroke Lesions in Non-Contrast Computed Tomography Datasets With Convolutional Neural Networks. IEEE Access, 2020, 8, 94871-94879.	4.2	20
58	Cerebral volume and diffusion MRI changes in children with sensorineural hearing loss. NeuroImage: Clinical, 2020, 27, 102328.	2.7	7
59	Metabolic activity in subcallosal cingulate predicts response to deep brain stimulation for depression. Neuropsychopharmacology, 2020, 45, 1681-1688.	5.4	35
60	High-resolution T2-FLAIR and non-contrast CT brain atlas of the elderly. Scientific Data, 2020, 7, 56.	5.3	20
61	Improved multi-parametric prediction of tissue outcome in acute ischemic stroke patients using spatial features. PLoS ONE, 2020, 15, e0228113.	2.5	13
62	Using Machine Learning to Predict Dementia from Neuropsychiatric Symptom and Neuroimaging Data. Journal of Alzheimer's Disease, 2020, 75, 277-288.	2.6	74
63	Building machine learning models without sharing patient data: A simulation-based analysis of distributed learning by ensembling. Journal of Biomedical Informatics, 2020, 106, 103424.	4.3	24
64	A Kernelized Multi-level Localization Method for Flexible Shape Modeling with Few Training Data. Lecture Notes in Computer Science, 2020, , 765-775.	1.3	4
65	Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flows. Lecture Notes in Computer Science, 2020, , 23-33.	1.3	5
66	Supervised machine learning tools: a tutorial for clinicians. Journal of Neural Engineering, 2020, 17, 062001.	3.5	75
67	Design of a head coil for high resolution mouse brain perfusion imaging using magnetic particle imaging. Physics in Medicine and Biology, 2020, 65, 235007.	3.0	22
68	Localized prediction of tissue outcome in acute ischemic stroke patients using diffusion- and perfusion-weighted MRI datasets. PLoS ONE, 2020, 15, e0241917.	2.5	6
69	Accuracy and Reliability of Multiphase CTA Perfusion for Identifying Ischemic Core. Clinical Neuroradiology, 2019, 29, 543-552.	1.9	15
70	Interdatabase Variability in Cortical Thickness Measurements. Cerebral Cortex, 2019, 29, 3282-3293.	2.9	5
71	A methodology for generating four-dimensional arterial spin labeling MR angiography virtual phantoms. Medical Image Analysis, 2019, 56, 184-192.	11.6	2
72	Stroke Lesion Segmentation in FLAIR MRI Datasets Using Customized Markov Random Fields. Frontiers in Neurology, 2019, 10, 541.	2.4	30

#	Article	IF	CITATIONS
73	Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Scientific Reports, 2019, 9, 8488.	3.3	28
74	Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements. Psychiatry and Clinical Neurosciences, 2019, 73, 486-493.	1.8	19
75	Hemodynamic Differences Between Recurrent and Nonrecurrent Intracranial Aneurysms: Fluid Dynamics Simulations Based on MR Angiography. Journal of Neuroimaging, 2019, 29, 447-453.	2.0	9
76	Attenuation Changes in ASPECTS Regions: A Surrogate for CT Perfusion–based Ischemic Core in Acute Ischemic Stroke. Radiology, 2019, 291, 451-458.	7.3	23
77	ERASER. Stroke, 2019, 50, 1275-1278.	2.0	25
78	A statistical atlas of cerebral arteries generated using multi-center MRA datasets from healthy subjects. Scientific Data, 2019, 6, 29.	5.3	44
79	F103. Using Multimodal Neuroimaging and Machine Learning to Determine Response to Subcallosal Cingulate Deep Brain Stimulation (SCC-DBS) for Depression. Biological Psychiatry, 2019, 85, S252-S253.	1.3	1
80	P4â€566: SUBJECTIVE COGNITIVE DECLINE (SCD) AND MILD BEHAVIORAL IMPAIRMENT (MBI) TOGETHER PREDIC MILD COGNITIVE IMPAIRMENT AT 3 YEARS BETTER THAN EITHER SYNDROME ALONE. Alzheimer's and Dementia, 2019, 15, P1535.	T 0.8	2
81	Building an Otoscopic screening prototype tool using deep learning. Journal of Otolaryngology - Head and Neck Surgery, 2019, 48, 66.	1.9	31
82	Segmentation-based blood flow parameter refinement in cerebrovascular structures using 4D arterial spin labeling MRA. IEEE Transactions on Biomedical Engineering, 2019, 67, 1-1.	4.2	1
83	Improved Automatic Morphology-Based Classification of Parkinson's Disease and Progressive Supranuclear Palsy. Clinical Neuroradiology, 2019, 29, 605-614.	1.9	5
84	Diffusion-weighted imaging lesion growth occurs despite recanalization in acute ischemic stroke: Implications for future treatment trials. International Journal of Stroke, 2019, 14, 257-264.	5.9	15
85	Long-Term Supratentorial Radiologic Effects of Surgery and Local Radiation in Children with Infratentorial Ependymoma. World Neurosurgery, 2019, 122, e1300-e1304.	1.3	3
86	Rapid solution of the Bloch-Torrey equation in anisotropic tissue: Application to dynamic susceptibility contrast MRI of cerebral white matter. NeuroImage, 2019, 185, 198-207.	4.2	24
87	Diffusion-Weighted MRI Stroke Volume Following Recanalization Treatment is Threshold-Dependent. Clinical Neuroradiology, 2019, 29, 135-141.	1.9	12
88	Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients. Scientific Reports, 2019, 9, 13208.	3.3	16
89	The Effect of Labeling Duration and Temporal Resolution on Arterial Transit Time Estimation Accuracy in 4D ASL MRA Datasets - A Flow Phantom Study. Lecture Notes in Computer Science, 2019, , 141-148.	1.3	0
90	Integration and the genetics of variation in facial shape. FASEB Journal, 2019, 33, 330.2.	0.5	0

#	Article	IF	CITATIONS
91	DCE MRI reveals early decreased and later increased placenta perfusion after a stress challenge during pregnancy in a mouse model. Placenta, 2018, 65, 15-19.	1.5	5
92	Resting-state functional connectivity in children born from gestations complicated by preeclampsia: A pilot study cohort. Pregnancy Hypertension, 2018, 12, 23-28.	1.4	30
93	Brain Diffusion Abnormalities in Children with Tension-Type and Migraine-Type Headaches. American Journal of Neuroradiology, 2018, 39, 935-941.	2.4	9
94	Automatic Temporal Segmentation of Vessels of the Brain Using 4D ASL MRA Images. IEEE Transactions on Biomedical Engineering, 2018, 65, 1486-1494.	4.2	6
95	Impact of Ischemic Lesion Location on the mRS Score in Patients with Ischemic Stroke: A Voxel-Based Approach. American Journal of Neuroradiology, 2018, 39, 1989-1994.	2.4	28
96	Widespread diffusion changes differentiate Parkinson's disease and progressive supranuclear palsy. NeuroImage: Clinical, 2018, 20, 1037-1043.	2.7	20
97	A longitudinal magnetic resonance imaging study of neurodegenerative and small vessel disease, and clinical cognitive trajectories in non demented patients with transient ischemic attack: the PREVENT study. BMC Geriatrics, 2018, 18, 163.	2.7	13
98	Association of Cardiovascular Risk Factors With MRI Indices of Cerebrovascular Structure and Function and White Matter Hyperintensities in Young Adults. JAMA - Journal of the American Medical Association, 2018, 320, 665.	7.4	105
99	Robust cerebrovascular segmentation in 4D ASL MRA images. , 2018, , .		1
100	Four-Dimensional ASL MR Angiography Phantoms with Noise Learned by Neural Styling. Lecture Notes in Computer Science, 2018, , 131-139.	1.3	1
101	Anisotropic cerebral vascular architecture causes orientation dependency in cerebral blood flow and volume measured with dynamic susceptibility contrast magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1108-1119.	4.3	25
102	Diffusion Tensor Imaging of White Matter in Children Born from Preeclamptic Gestations. American Journal of Neuroradiology, 2017, 38, 801-806.	2.4	26
103	Rapid automated landmarking for morphometric analysis of threeâ€dimensional facial scans. Journal of Anatomy, 2017, 230, 607-618.	1.5	31
104	Automatic classification of patients with idiopathic Parkinson's disease and progressive supranuclear palsy using diffusion MRI datasets. , 2017, , .		1
105	Comparison of classification methods for voxel-based prediction of acute ischemic stroke outcome following intra-arterial intervention. Proceedings of SPIE, 2017, , .	0.8	3
106	Automatic classification of cardioembolic and arteriosclerotic ischemic strokes from apparent diffusion coefficient datasets using texture analysis and deep learning. , 2017, , .		0
107	Brain Perfusion and Diffusion Abnormalities in Children Treated for Posterior Fossa Brain Tumors. Journal of Pediatrics, 2017, 185, 173-180.e3.	1.8	21
108	Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain. , 2017, , .		1

7

#	Article	IF	CITATIONS
109	ERic Acute StrokE Recanalization: A study using predictive analytics to assess a new device for mechanical thrombectomy. International Journal of Stroke, 2017, 12, 659-666.	5.9	5
110	Regional Comparison of Multiphase Computed Tomographic Angiography and Computed Tomographic Perfusion for Prediction of Tissue Fate in Ischemic Stroke. Stroke, 2017, 48, 939-945.	2.0	46
111	Most Children With Epilepsy Experience Postictal Phenomena, Often Preventing a Return to Normal Activities of Childhood. Pediatric Neurology, 2017, 72, 42-50.e3.	2.1	6
112	Hypointense Vessels Detected by Susceptibilityâ€Weighted Imaging Identifies Tissue at Risk of Infarction in Anterior Circulation Stroke. Journal of Neuroimaging, 2017, 27, 414-420.	2.0	4
113	Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke. ACS Nano, 2017, 11, 10480-10488.	14.6	142
114	Comparison of vessel enhancement algorithms applied to timeâ€ofâ€flight MRA images for cerebrovascular segmentation. Medical Physics, 2017, 44, 5901-5915.	3.0	17
115	Vascular Segmentation in TOF MRA Images of the Brain Using a Deep Convolutional Neural Network. Lecture Notes in Computer Science, 2017, , 39-46.	1.3	21
116	Neurological function in children born to preeclamptic and hypertensive mothers – A systematic review. Pregnancy Hypertension, 2017, 10, 1-6.	1.4	40
117	CT-perfusion stroke imaging: a threshold free probabilistic approach to predict infarct volume compared to traditional ischemic thresholds. Scientific Reports, 2017, 7, 6679.	3.3	32
118	Stroke subtype classification by geometrical descriptors of lesion shape. PLoS ONE, 2017, 12, e0185063.	2.5	10
119	Technical considerations of a game-theoretical approach for lesion symptom mapping. BMC Neuroscience, 2016, 17, 40.	1.9	7
120	Gray Matter Growth Is Accompanied by Increasing Blood Flow and Decreasing Apparent Diffusion Coefficient during Childhood. American Journal of Neuroradiology, 2016, 37, 1738-1744.	2.4	21
121	Beyond cost function masking: RPCA-based non-linear registration in the context of VLSM. , 2016, , .		3
122	Brain Structural and Vascular Anatomy Is Altered in Offspring of Pre-Eclamptic Pregnancies: A Pilot Study. American Journal of Neuroradiology, 2016, 37, 939-945.	2.4	77
123	Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature. PLoS ONE, 2016, 11, e0149930.	2.5	8
124	Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics. PLoS ONE, 2016, 11, e0160097.	2.5	51
125	Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography. PLoS ONE, 2016, 11, e0164863.	2.5	4
126	Model-based analysis of cerebrovascular diseases combining 3D and 4D MRA datasets. IT - Information Technology, 2015, 57, 208-212.	0.9	0

#	Article	IF	CITATIONS
127	Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke. NeuroImage: Clinical, 2015, 9, 83-94.	2.7	29
128	Classifiers for Ischemic Stroke Lesion Segmentation: A Comparison Study. PLoS ONE, 2015, 10, e0145118.	2.5	125
129	Effect of sample size on multi-parametric prediction of tissue outcome in acute ischemic stroke using a random forest classifier. , 2015, , .		2
130	Ipsilesional motor area size correlates with functional recovery after stroke: A 6-month follow-up longitudinal TMS motor mapping study. Restorative Neurology and Neuroscience, 2015, 33, 221-231.	0.7	29
131	Multivariate Dynamic Prediction of Ischemic Infarction and Tissue Salvage as a Function of Time and Degree of Recanalization. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1397-1405.	4.3	69
132	Time-Dependent Computed Tomographic Perfusion Thresholds for Patients With Acute Ischemic Stroke, 2015, 46, 3390-3397.	2.0	114
133	Increased Perfusion in Normal Appearing White Matter in High Inflammatory Multiple Sclerosis Patients. PLoS ONE, 2015, 10, e0119356.	2.5	35
134	Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients. PLoS ONE, 2015, 10, e0129569.	2.5	39
135	Spatial Distribution of Perfusion Abnormality in Acute MCA Occlusion is Associated with Likelihood of Later Recanalization. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 813-819.	4.3	7
136	Validity of Acute Stroke Lesion Volume Estimation by Diffusion-Weighted Imaging–Alberta Stroke Program Early Computed Tomographic Score Depends on Lesion Location in 496 Patients With Middle Cerebral Artery Stroke. Stroke, 2014, 45, 3583-3588.	2.0	36
137	Influence of Stroke Infarct Location on Functional Outcome Measured by the Modified Rankin Scale. Stroke, 2014, 45, 1695-1702.	2.0	193
138	Impact of Severe Extracranial ICA Stenosis on MRI Perfusion and Diffusion Parameters in Acute Ischemic Stroke. Frontiers in Neurology, 2014, 5, 254.	2.4	10
139	Aligning 3D time-of-flight MRA datasets for quantitative longitudinal studies: evaluation of rigid registration techniques. Magnetic Resonance Imaging, 2014, 32, 1390-1395.	1.8	Ο
140	A simple brain atrophy measure improves the prediction of malignant middle cerebral artery infarction by acute DWI lesion volume. Journal of Neurology, 2014, 261, 1097-1103.	3.6	33
141	Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?. Proceedings of SPIE, 2014, , .	0.8	1
142	The Extent of Perfusion Deficit Does Not Relate to the Visibility of Acute Ischemic Lesions on Fluidâ€Attenuated Inversion Recovery Imaging. Journal of Neuroimaging, 2013, 23, 215-218.	2.0	4
143	Comparison of 3D computer-aided with manual cerebral aneurysm measurements in different imaging modalities. Neuroradiology, 2013, 55, 171-178.	2.2	13
144	Computer-aided nidus segmentation and angiographic characterization of arteriovenous malformations. International Journal of Computer Assisted Radiology and Surgery, 2013, 8, 775-786.	2.8	18

#	Article	IF	CITATIONS
145	3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magnetic Resonance Imaging, 2013, 31, 262-271.	1.8	65
146	Classification of Cerebral Arteriovenous Malformations and Intranidal Flow Patterns by Color-Encoded 4D-Hybrid-MRA. American Journal of Neuroradiology, 2013, 34, 46-53.	2.4	18
147	Quantitative Measurements of Relative Fluid-Attenuated Inversion Recovery (FLAIR) Signal Intensities in Acute Stroke for the Prediction of Time from Symptom Onset. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 76-84.	4.3	46
148	Multiparametric prediction of acute ischemic stroke tissue outcome using CT perfusion datasets. Proceedings of SPIE, 2013, , .	0.8	1
149	Impact of Protein Content on Proton Diffusibility in Intracranial Cysts. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2012, 185, 60-65.	1.3	2
150	Analysis of the Influence of 4D MR Angiography Temporal Resolution on Time-to-Peak Estimation Error for Different Cerebral Vessel Structures. American Journal of Neuroradiology, 2012, 33, 2103-2109.	2.4	5
151	Persistent Hemodynamic Changes in Ruptured Brain Arteriovenous Malformations. Stroke, 2012, 43, 2910-2915.	2.0	43
152	Elevated T2-values in MRI of stroke patients shortly after symptom onset do not predict irreversible tissue infarction. Brain, 2012, 135, 1981-1989.	7.6	29
153	Comparison of TTP and Tmax estimation techniques in perfusion-weighted MR datasets for tissue-at-risk definition. , 2012, , .		0
154	4D blood flow visualization fusing 3D and 4D MRA image sequences. Journal of Magnetic Resonance Imaging, 2012, 36, spcone.	3.4	0
155	4D blood flow visualization fusing 3D and 4D MRA image sequences. Journal of Magnetic Resonance Imaging, 2012, 36, 443-453.	3.4	21
156	Rigid 3D–3D registration of TOF MRA integrating vessel segmentation for quantification of recurrence volumes after coiling cerebral aneurysm. Neuroradiology, 2012, 54, 171-176.	2.2	6
157	Computer-Aided Detection of Aneurysms in 3D Time-of-Flight MRA Datasets. Lecture Notes in Computer Science, 2012, , 63-69.	1.3	9
158	Generation of a probabilistic arterial cerebrovascular atlas derived from 700 time-of-flight MRA datasets. Studies in Health Technology and Informatics, 2012, 180, 148-52.	0.3	2
159	DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurology, The, 2011, 10, 978-986.	10.2	468
160	Quantification of recurrence volumes after endovascular treatment of cerebral aneurysm as surrogate endpoint for treatment stability. Neuroradiology, 2011, 53, 593-598.	2.2	12
161	Referenceâ€based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusionâ€weighted image sequences. Magnetic Resonance in Medicine, 2011, 65, 289-294.	3.0	22
162	Direction-dependent level set segmentation of cerebrovascular structures. Proceedings of SPIE, 2011, ,	0.8	8

#	Article	IF	CITATIONS
163	Image-based classification of parkinsonian syndromes using T2'-atlases. Studies in Health Technology and Informatics, 2011, 169, 465-9.	0.3	4
164	Closing of interrupted vascular segmentations: an automatic approach based on shortest paths and level sets. , 2010, , .		4
165	Evaluation of methods for bolus arrival time determination using a four-dimensional MRA flow phantom. Studies in Health Technology and Informatics, 2010, 160, 1263-7.	0.3	2
166	Automatic analysis of the anatomy of arteriovenous malformations using 3D and 4D MRA image sequences. Studies in Health Technology and Informatics, 2010, 160, 1268-72.	0.3	6
167	Automatic Brain Segmentation in Time-of-Flight MRA Images. Methods of Information in Medicine, 2009, 48, 399-407.	1.2	31
168	Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences. Proceedings of SPIE, 2009, , .	0.8	3
169	Territorial and Microvascular Perfusion Impairment in Brain Arteriovenous Malformations. American Journal of Neuroradiology, 2009, 30, 356-361.	2.4	38
170	Fuzzy-based extraction of vascular structures from time-of-flight MR images. Studies in Health Technology and Informatics, 2009, 150, 816-20.	0.3	5