
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8404872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Daily changes in neuronal activities of the dorsal motor nucleus of the vagus under standard and highâ€fat diet. Journal of Physiology, 2022, 600, 733-749.	1.3	13
2	Rhythmic neuronal activities of the rat nucleus of the solitary tract are impaired by highâ€fat diet – implications for daily control of satiety. Journal of Physiology, 2022, 600, 751-767.	1.3	13
3	A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate. Heart Rhythm, 2021, 18, 801-810.	0.3	46
4	Phasic Neuronal Firing in the Rodent Nucleus of the Solitary Tract ex vivo. Frontiers in Physiology, 2021, 12, 638695.	1.3	13
5	Timed daily exercise remodels circadian rhythms in mice. Communications Biology, 2021, 4, 761.	2.0	22
6	Perforated Multi-Electrode Array Recording in Hypothalamic Brain Slices. Methods in Molecular Biology, 2021, 2130, 263-285.	0.4	11
7	32â€Sleep quality, mental health, and circadian rhythms during COVID lockdown – results from the SleepQuest study. , 2021, , .		Ο
8	Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Frontiers in Behavioral Neuroscience, 2021, 15, 815700.	1.0	5
9	Keeping time in the lamina terminalis: Novel oscillator properties of forebrain sensory circumventricular organs. FASEB Journal, 2020, 34, 974-987.	0.2	13
10	Circadian VIPergic Neurons of the Suprachiasmatic Nuclei Sculpt the Sleep-Wake Cycle. Neuron, 2020, 108, 486-499.e5.	3.8	55
11	Timekeeping in the hindbrain: a multi-oscillatory circadian centre in the mouse dorsal vagal complex. Communications Biology, 2020, 3, 225.	2.0	27
12	Sleep homeostasis during daytime food entrainment in mice. Sleep, 2019, 42, .	0.6	19
13	The Kidney Clock Contributes to Timekeeping by the Master Circadian Clock. International Journal of Molecular Sciences, 2019, 20, 2765.	1.8	21
14	Circadian Disruptions in the Myshkin Mouse Model of Mania Are Independent of Deficits in Suprachiasmatic Molecular Clock Function. Biological Psychiatry, 2018, 84, 827-837.	0.7	22
15	PACAP Neurons in the Ventromedial Hypothalamic Nucleus Are Glucose Inhibited and Their Selective Activation Induces Hyperglycaemia. Frontiers in Endocrinology, 2018, 9, 632.	1.5	24
16	Editorial overview: Circadian rhythms. Current Opinion in Physiology, 2018, 5, iii-v.	0.9	0
17	The Mammalian Neural Circadian System: From Molecules to Behaviour. , 2017, , 257-275.		3
18	Contributions of the lateral habenula to circadian timekeeping. Pharmacology Biochemistry and Behavior, 2017, 162, 46-54.	1.3	54

#	Article	IF	CITATIONS
19	Circadian regulation of mouse suprachiasmatic nuclei neuronal states shapes responses to orexin. European Journal of Neuroscience, 2017, 45, 723-732.	1.2	23
20	Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability. Journal of Neuroscience, 2017, 37, 7824-7836.	1.7	12
21	Dietary fat and corticosterone levels are contributing factors to meal anticipation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R711-R723.	0.9	19
22	Modeling sleep alterations in Parkinson's disease: How close are we toÂvalid translational animal models?. Sleep Medicine Reviews, 2016, 25, 95-111.	3.8	27
23	Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Scientific Reports, 2015, 5, 14044.	1.6	18
24	VPAC2 receptor expression in human normal and neoplastic tissues: evaluation of the novel MAB SP235. Endocrine Connections, 2015, 4, 18-26.	0.8	16
25	Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3911-9.	3.3	120
26	Orexin and Circadian Influences in Sleep and Psychiatric Disorders: A Review of Experimental and Computational Modelling Studies. , 2015, , 299-322.		2
27	Feeding time. ELife, 2015, 4, .	2.8	3
28	Acute Suppressive and Long-Term Phase Modulation Actions of Orexin on the Mammalian Circadian Clock. Journal of Neuroscience, 2014, 34, 3607-3621.	1.7	116
29	Daily variation in the electrophysiological activity of mouse medial habenula neurones. Journal of Physiology, 2014, 592, 587-603.	1.3	42
30	Disruption of daily rhythms in gene expression: The importance of being synchronised. BioEssays, 2014, 36, 644-648.	1.2	9
31	Identifying spatial and temporal organization in the circadian clock (<scp>C</scp> ommentary on) Tj ETQq1 1	0.784314 rg	BT/Overlock
32	Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. Journal of Physiology, 2014, 592, 5025-5045.	1.3	57
33	Circadian and Dark-Pulse Activation of Orexin/Hypocretin Neurons. , 2014, , 159-187.		0
34	The Circadian Clock in Murine Chondrocytes Regulates Genes Controlling Key Aspects of Cartilage Homeostasis. Arthritis and Rheumatism, 2013, 65, 2334-2345.	6.7	117
35	Causes and Consequences of Hyperexcitation in Central Clock Neurons. PLoS Computational Biology, 2013, 9, e1003196.	1.5	39
36	Suppressed cellular oscillations in afterâ€hours mutant mice are associated with enhanced circadian phaseâ€resetting. Journal of Physiology, 2013, 591, 1063-1080.	1.3	21

#	Article	IF	CITATIONS
37	Feedback actions of locomotor activity to the circadian clock. Progress in Brain Research, 2012, 199, 305-336.	0.9	73
38	Circadian Time Redoxed. Science, 2012, 337, 805-806.	6.0	7
39	Ultradian corticosterone secretion is maintained in the absence of circadian cues. European Journal of Neuroscience, 2012, 36, 3142-3150.	1.2	80
40	Neuropeptide Signaling Differentially Affects Phase Maintenance and Rhythm Generation in SCN and Extra-SCN Circadian Oscillators. PLoS ONE, 2011, 6, e18926.	1.1	21
41	Multiple hypothalamic cell populations encoding distinct visual information. Journal of Physiology, 2011, 589, 1173-1194.	1.3	85
42	Zooming in on a gene. Nature, 2011, 471, 455-456.	13.7	9
43	Visual responses in the lateral geniculate evoked by Cx36-independent rod pathways. Vision Research, 2011, 51, 280-287.	0.7	21
44	Quantifying the visual information sourced from melanopsin photoreceptors in mouse LGN field responses. BMC Neuroscience, 2011, 12, .	0.8	0
45	The neural circadian system of mammals. Essays in Biochemistry, 2011, 49, 1-17.	2.1	19
46	Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System. PLoS Biology, 2010, 8, e1000558.	2.6	226
47	Deletion of the secretory vesicle proteins IAâ€2 and IAâ€2β disrupts circadian rhythms of cardiovascular and physical activity. FASEB Journal, 2009, 23, 3226-3232.	0.2	25
48	Daily Electrical Silencing in the Mammalian Circadian Clock. Science, 2009, 326, 281-284.	6.0	156
49	A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Molecular Brain, 2009, 2, 28.	1.3	153
50	Circadian and dark-pulse activation of orexin/hypocretin neurons. Molecular Brain, 2008, 1, 19.	1.3	102
51	Live imaging of altered <i>period1</i> expression in the suprachiasmatic nuclei of <i>Vipr2</i> ^{â^'<i>/</i> a^'} mice ¹ . Journal of Neurochemistry, 2008, 106, 1646-1657.	2.1	55
52	Setting Clock Speed in Mammals: The CK1É› tau Mutation in Mice Accelerates Circadian Pacemakers by Selectively Destabilizing PERIOD Proteins. Neuron, 2008, 58, 78-88.	3.8	342
53	<i>Neurospora crassa heat shock factor 1</i> Is an Essential Gene; a Second Heat Shock Factor-Like Gene, <i>hsf2</i> , Is Required for Asexual Spore Formation. Eukaryotic Cell, 2008, 7, 1573-1581.	3.4	19
54	Metabolic rhythm abnormalities in mice lacking VIP-VPAC ₂ signaling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R344-R351.	0.9	68

#	Article	IF	CITATIONS
55	Abundance of Degrees of Freedom. , 2008, , 3-3.		1
56	Electrophysiology of the suprachiasmatic circadian clock. Progress in Neurobiology, 2007, 82, 229-255.	2.8	130
57	Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?. European Journal of Neuroscience, 2007, 25, 3195-3216.	1.2	309
58	Biological clocks and endocrine function in vertebrates and invertebrates. General and Comparative Endocrinology, 2007, 152, 142-143.	0.8	0
59	Substance P and neurokinin-1 immunoreactivities in the neural circadian system of the Alaskan northern red-backed vole, Clethrionomys rutilus. Peptides, 2006, 27, 2976-2992.	1.2	1
60	Stabilizing daily clock proteins. Biochemical Journal, 2006, 399, e1-2.	1.7	0
61	A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices. Journal of Neuroscience Methods, 2006, 156, 173-181.	1.3	34
62	VIP receptors control excitability of suprachiasmatic nuclei neurones. Pflugers Archiv European Journal of Physiology, 2006, 452, 7-15.	1.3	43
63	Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei. European Journal of Neuroscience, 2005, 22, 158-168.	1.2	27
64	Circadian Biology: Clocks within Clocks. Current Biology, 2005, 15, R455-R457.	1.8	22
65	Gastrin-Releasing Peptide Promotes Suprachiasmatic Nuclei Cellular Rhythmicity in the Absence of Vasoactive Intestinal Polypeptide-VPAC2 Receptor Signaling. Journal of Neuroscience, 2005, 25, 11155-11164.	1.7	109
66	Gastrin-releasing peptide induces c-Fos in the hamster suprachiasmatic nucleus. Neuroscience Letters, 2005, 384, 205-210.	1.0	20
67	Aberrant Gating of Photic Input to the Suprachiasmatic Circadian Pacemaker of Mice Lacking the VPAC2 Receptor. Journal of Neuroscience, 2004, 24, 3522-3526.	1.7	94
68	MAP kinases in the mammalian circadian system - key regulators of clock function. Journal of Neurochemistry, 2004, 90, 769-775.	2.1	62
69	Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites. Journal of Comparative Neurology, 2004, 475, 19-35.	0.9	58
70	Vasoactive intestinal polypeptide phase-advances the rat suprachiasmatic nuclei circadian pacemaker in vitro via protein kinase A and mitogen-activated protein kinase. Neuroscience Letters, 2004, 358, 91-94.	1.0	41
71	The mouse VPAC2receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptidein vitro. European Journal of Neuroscience, 2003, 17, 197-204.	1.2	129
72	Circadian and Photic Regulation of Phosphorylation of ERK1/2 and Elk-1 in the Suprachiasmatic Nuclei of the Syrian Hamster. Journal of Neuroscience, 2003, 23, 3085-3093.	1.7	102

HUGH DAVID PIGGINS

#	Article	IF	CITATIONS
73	Human clock genes. Annals of Medicine, 2002, 34, 394-400.	1.5	52
74	The VPAC2 Receptor Is Essential for Circadian Function in the Mouse Suprachiasmatic Nuclei. Cell, 2002, 109, 497-508.	13.5	488
75	Identification of PAC1 receptor isoform mRNAs by real-time PCR in rat suprachiasmatic nucleus. Molecular Brain Research, 2002, 105, 29-37.	2.5	29
76	Neurotensin phase-shifts the firing rate rhythm of neurons in the rat suprachiasmatic nucleiin vitro. European Journal of Neuroscience, 2002, 16, 339-344.	1.2	22
77	Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neuroscience Letters, 2001, 305, 25-28.	1.0	38
78	Distribution of substance P and neurokinin-1 receptor immunoreactivity in the suprachiasmatic nuclei and intergeniculate leaflet of hamster, mouse, and rat. Journal of Comparative Neurology, 2001, 438, 50-65.	0.9	46
79	Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clockin vitro. European Journal of Neuroscience, 2001, 13, 839-843.	1.2	120
80	Orexin A-like immunoreactivity in the hypothalamus and thalamus of the Syrian hamster (Mesocricetus auratus) and Siberian hamster (Phodopus sungorus), with special reference to circadian structures. Brain Research, 2001, 904, 234-244.	1.1	71
81	Gastrin-Releasing Peptide Phase-Shifts Suprachiasmatic Nuclei Neuronal RhythmsIn Vitro. Journal of Neuroscience, 2000, 20, 5496-5502.	1.7	94
82	Expression of mt1 melatonin receptor subtype mRNA in the entrained rat suprachiasmatic nucleus: a quantitative RT–PCR study across the diurnal cycle. Molecular Brain Research, 1999, 72, 176-182.	2.5	23
83	Actions of histamine in the suprachiasmatic nucleus of the Syrian hamster. Brain Research, 1998, 783, 1-9.	1.1	9
84	Circadian changes of type II adenylyl cyclase mRNA in the rat suprachiasmatic nuclei. Brain Research, 1998, 810, 279-282.	1.1	10
85	Circadian changes in PACAP type 1 (PAC1) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Research, 1998, 813, 218-222.	1.1	59
86	Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Molecular Brain Research, 1998, 54, 108-112.	2.5	55
87	Responses to neuropeptide Y in adult hamster suprachiasmatic nucleus neurones in vitro. European Journal of Pharmacology, 1998, 345, 155-162.	1.7	16
88	Effects of Microinjections of Substance P Into the Suprachiasmatic Nucleus Region on Hamster Wheel-Running Rhythms. Brain Research Bulletin, 1997, 42, 451-455.	1.4	33
89	Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster. Brain Research, 1997, 756, 215-224.	1.1	30
90	Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. Journal of Comparative Neurology, 1996, 376, 278-294.	0.9	113

HUGH DAVID PIGGINS

#	Article	IF	CITATIONS
91	Ionophoretically applied substance P activates hamster suprachiasmatic nucleus neurons. Brain Research Bulletin, 1995, 37, 475-479.	1.4	23
92	Effects of ionophoretically applied bombesin-like peptides on hamster suprachiasmatic nucleus neurons in vitro. European Journal of Pharmacology, 1994, 271, 413-419.	1.7	26
93	Electrophysiological Effects of Pressure-Ejected Bombesin-Like Peptides on Hamster Suprachiasmatic Nucleus Neurons in vitro. Journal of Neuroendocrinology, 1993, 5, 575-581.	1.2	25
94	Regulation of melatonin-sensitivity and firing-rate rhythms of hamster suprachiasmatic nucleus neurons: constant light effects. Brain Research, 1993, 602, 191-199.	1.1	31
95	Effects of neonatal blockade of bombesin (BN) receptors with [d-Phe6,Î ⁻ Leu13-Cpa14]BN(6–14) on adult behavior and sensitivity to BN. Peptides, 1993, 14, 845-848.	1.2	7
96	Short- and long-term behavioral effects of neonatal exposure to bombesin. Behavioral and Neural Biology, 1992, 57, 213-225.	2.3	10
97	On the ontogenetic and sequential characteristics of bombesin-induced grooming in the infant rat. Developmental Brain Research, 1992, 67, 247-256.	2.1	6
98	Effects of dopamine D1 and D2 receptor agonists and antagonists on bombesin-induced behaviors. European Journal of Pharmacology, 1990, 191, 281-293.	1.7	20
99	The effects of concurrent D-1 and D-2 dopamine receptor blockade with sch 23390 and eticlopride, on bombesin-induced behaviours. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1989, 13, 583-594.	2.5	10