## Francesco Fini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8404845/publications.pdf

Version: 2024-02-01



FRANCESCO FINI

| #  | Article                                                                                                                                                                                                                                            | IF              | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| 1  | Insights in the rheological properties of PLGA-PEG-PLGA aqueous dispersions: Structural properties and temperature-dependent behaviour. Polymer, 2021, 213, 123216.                                                                                | 3.8             | 7         |
| 2  | Straightforward synthesis of chiral non-racemic α-boryl isocyanides. Organic and Biomolecular<br>Chemistry, 2021, 19, 6687-6691.                                                                                                                   | 2.8             | 1         |
| 3  | Asymmetric Organocatalysis Accelerated via Selfâ€Assembled Minimal Structures. European Journal of<br>Organic Chemistry, 2021, 2021, 5403-5406.                                                                                                    | 2.4             | 6         |
| 4  | 1,2,3-Triazolylmethaneboronate: A Structure Activity Relationship Study of a Class of β-Lactamase<br>Inhibitors against <i>Acinetobacter baumannii</i> Cephalosporinase. ACS Infectious Diseases, 2020, 6,<br>1965-1975.                           | 3.8             | 12        |
| 5  | The β-Lactamase Inhibitor Boronic Acid Derivative SM23 as a New Anti-Pseudomonas aeruginosa Biofilm.<br>Frontiers in Microbiology, 2020, 11, 35.                                                                                                   | 3.5             | 22        |
| 6  | Organocatalysis and Beyond: Activating Reactions with Two Catalytic Species. Catalysts, 2019, 9, 928.                                                                                                                                              | 3.5             | 26        |
| 7  | A Regio―and Stereoselective Carbonylative Approach to Alkyl<br>( <i>Z</i> )â€2â€{3â€Oxoisobenzofuranâ€1â€(3 <i>H</i> )â€ylidene]acetates. Advanced Synthesis and Catalysis,<br>361, 690-695.                                                       | 204 <b>.9</b> , | 11        |
| 8  | Diastereospecific Bisâ€elkoxycarbonylation of 1,2â€Disubstituted Olefins Catalyzed by Aryl αâ€Diimine<br>Palladium(II) Catalysts. Advanced Synthesis and Catalysis, 2018, 360, 3507-3517.                                                          | 4.3             | 15        |
| 9  | Inhibition of <i>Acinetobacter</i> -Derived Cephalosporinase: Exploring the Carboxylate Recognition<br>Site Using Novel β-Lactamase Inhibitors. ACS Infectious Diseases, 2018, 4, 337-348.                                                         | 3.8             | 27        |
| 10 | Front Cover Picture: Diastereospecific Bis-alkoxycarbonylation of 1,2-Disubstituted Olefins Catalyzed<br>by Aryl α-Diimine Palladium(II) Catalysts (Adv. Synth. Catal. 18/2018). Advanced Synthesis and Catalysis,<br>2018, 360, 3425-3425.        | 4.3             | 0         |
| 11 | Palladium(II)-Catalyzed Cross-Dehydrogenative Coupling (CDC) of <i>N</i> -Phthaloyl Dehydroalanine<br>Esters with Simple Arenes: Stereoselective Synthesis of <i>Z</i> -Dehydrophenylalanine Derivatives.<br>Organic Letters, 2016, 18, 2762-2765. | 4.6             | 41        |
| 12 | Oxidative Alkoxycarbonylation of Alkynes by Means of Aryl αâ€Điimine Palladium(II) Complexes as<br>Catalysts. Advanced Synthesis and Catalysis, 2016, 358, 3244-3253.                                                                              | 4.3             | 19        |
| 13 | Palladium complexes with simple iminopyridines as catalysts for polyketone synthesis. Dalton<br>Transactions, 2016, 45, 14609-14619.                                                                                                               | 3.3             | 22        |
| 14 | Chemical–physical properties and cytotoxicity of N -decanoyl amino acid-based surfactants: Effect of polar heads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492, 38-46.                                              | 4.7             | 33        |
| 15 | Catalytic Oxidative Carbonylation of Amino Moieties to Ureas, Oxamides, 2â€Oxazolidinones, and<br>Benzoxazolones. ChemSusChem, 2015, 8, 2204-2211.                                                                                                 | 6.8             | 63        |
| 16 | Unprecedented Comonomer Dependence of the Stereochemistry Control in Pd atalyzed CO/Vinyl<br>Arene Polyketone Synthesis. ChemCatChem, 2015, 7, 2255-2264.                                                                                          | 3.7             | 15        |
| 17 | Selective Aryl αâ€Diimine/Palladiumâ€Catalyzed Bisâ€Alkoxy―carbonylation of Olefins for the Synthesis of<br>Substituted Succinic Diesters. Advanced Synthesis and Catalysis, 2015, 357, 177-184.                                                   | 4.3             | 21        |
| 18 | New Aryl α-Diimine Palladium(II) Catalysts in Stereocontrolled CO/Vinyl Arene Copolymerization.<br>Organometallics, 2014, 33, 129-144.                                                                                                             | 2.3             | 24        |

Francesco Fini

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Analogies and Differences in Palladiumâ€Catalyzed CO/Styrene and Ethylene/Methyl Acrylate<br>Copolymerization Reactions. ChemCatChem, 2014, 6, 2403-2418.                                                                               | 3.7  | 22        |
| 20 | Phase transfer catalyzed enantioselective cyclopropanation of 4-nitro-5-styrylisoxazoles. Chemical Communications, 2012, 48, 3863.                                                                                                      | 4.1  | 91        |
| 21 | Catalytic Enantioselective Addition of Sodium Bisulfite to Chalcones. Angewandte Chemie -<br>International Edition, 2011, 50, 6893-6895.                                                                                                | 13.8 | 40        |
| 22 | Development of a Mild Procedure for the Addition of Bisulfite to Electrophilic Olefins. Advanced Synthesis and Catalysis, 2010, 352, 3163-3168.                                                                                         | 4.3  | 41        |
| 23 | Asymmetric Synthesis of α,βâ€Diaminophosphonic Acid Derivatives with a Catalytic Enantioselective<br>Mannich Reaction. Advanced Synthesis and Catalysis, 2009, 351, 2283-2287.                                                          | 4.3  | 30        |
| 24 | Catalytic Asymmetric Mannich Reactions of Sulfonylacetates. Angewandte Chemie - International<br>Edition, 2009, 48, 5694-5697.                                                                                                          | 13.8 | 80        |
| 25 | Organocatalytic Asymmetric Formal [3 + 2] Cycloaddition with in Situ-Generated <i>N</i> -Carbamoyl<br>Nitrones. Journal of the American Chemical Society, 2009, 131, 9614-9615.                                                         | 13.7 | 99        |
| 26 | Organocatalytic Asymmetric Diels–Alder Reactions of 3â€Vinylindoles. Angewandte Chemie -<br>International Edition, 2008, 47, 9236-9239.                                                                                                 | 13.8 | 217       |
| 27 | An easy entry to optically active α-amino phosphonic acid derivatives using phase-transfer catalysis<br>(PTC). Chemical Communications, 2008, , 4345.                                                                                   | 4.1  | 42        |
| 28 | Organocatalyzed Enantioselective Synthesis of Nitroalkanes Bearing All-Carbon Quaternary<br>Stereogenic Centers through Conjugate Addition of Acetone Cyanohydrin. Synlett, 2008, 2008,<br>1857-1861.                                   | 1.8  | 9         |
| 29 | Organocatalysis in the Asymmetric Synthesis of Nitrogen-Containing Compounds: How and Why.<br>Chimia, 2007, 61, 224-231.                                                                                                                | 0.6  | 10        |
| 30 | Organocatalytic Asymmetric Mannich Reactions with <i>N</i> â€Boc and <i>N</i> â€Cbz Protected αâ€Amido<br>Sulfones (Boc: <i>tert</i> â€Butoxycarbonyl, Cbz: Benzyloxycarbonyl). Chemistry - A European Journal,<br>2007, 13, 8338-8351. | 3.3  | 113       |
| 31 | Organocatalytic Enantioselective Decarboxylative Addition of Malonic Half Thioesters to Imines.<br>Advanced Synthesis and Catalysis, 2007, 349, 1037-1040.                                                                              | 4.3  | 112       |
| 32 | Organocatalytic asymmetric aza-Michael reaction: enantioselective addition of<br>O-benzylhydroxylamine to chalcones. Tetrahedron Letters, 2007, 48, 7805-7808.                                                                          | 1.4  | 53        |
| 33 | Direct Access to Enantiomerically Enriched α-Amino Phosphonic Acid Derivatives by Organocatalytic<br>Asymmetric Hydrophosphonylation of Imines. Journal of Organic Chemistry, 2006, 71, 6269-6272.                                      | 3.2  | 137       |
| 34 | Phase Transfer Catalyzed Enantioselective Strecker Reactions of α-Amido Sulfones with Cyanohydrins.<br>Journal of Organic Chemistry, 2006, 71, 9869-9872.                                                                               | 3.2  | 81        |
| 35 | Enantioselective aza-Henry reaction using cinchona organocatalysts. Tetrahedron, 2006, 62, 375-380.                                                                                                                                     | 1.9  | 138       |
| 36 | Towards the Synthesis of Highly Functionalized Chiral α-Amino Nitriles by Aminative Cyanation and Their Synthetic Applications. European Journal of Organic Chemistry, 2006, 2006, 207-217.                                             | 2.4  | 6         |

Francesco Fini

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Phase-Transfer-Catalyzed Enantioselective Mannich Reaction of Malonates with α-Amido Sulfones.<br>Advanced Synthesis and Catalysis, 2006, 348, 2043-2046.                                           | 4.3  | 74        |
| 38 | A Broadened Scope for the Use of Hydrazones as Neutral Nucleophiles in the Presence of H-Bonding Organocatalysts. Synlett, 2006, 2006, 239-242.                                                     | 1.8  | 31        |
| 39 | First 1,3-Dipolar Cycloaddition of Azomethine Ylides with (E)-Ethyl 3-Fluoroacrylate: Regio- and<br>Stereoselective Synthesis of Enantiopure ÂFluorinated Prolines. Synlett, 2006, 2006, 0543-0546. | 1.8  | 2         |
| 40 | Chiral oxazoline-1,3-dithianes: new effective nitrogen–sulfur donating ligands in asymmetric catalysis. Tetrahedron: Asymmetry, 2005, 16, 3232-3240.                                                | 1.8  | 12        |
| 41 | Phase-Transfer-Catalyzed Asymmetric Aza-Henry Reaction UsingN-Carbamoyl Imines Generated In Situ<br>from α-Amido Sulfones. Angewandte Chemie - International Edition, 2005, 44, 7975-7978.          | 13.8 | 170       |