Yanfeng Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8404810/publications.pdf

Version: 2024-02-01

304743 330143 6,073 38 22 37 h-index citations g-index papers 38 38 38 6155 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249-253.	27.8	1,555
2	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	31.4	1,535
3	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	31.4	970
4	Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nature Communications, 2018, 9, 608.	12.8	322
5	Oriented Quasiâ€2D Perovskites for High Performance Optoelectronic Devices. Advanced Materials, 2018, 30, e1804771.	21.0	268
6	Efficient Red Perovskite Lightâ€Emitting Diodes Based on Solutionâ€Processed Multiple Quantum Wells. Advanced Materials, 2017, 29, 1606600.	21.0	155
7	Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nature Communications, 2019, 10, 2818.	12.8	129
8	Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nature Communications, 2019, 10, 3624.	12.8	104
9	Microcavity top-emission perovskite light-emitting diodes. Light: Science and Applications, 2020, 9, 89.	16.6	96
10	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbI ₃ Perovskite. Angewandte Chemie - International Edition, 2021, 60, 12351-12355.	13.8	94
11	Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800667.	7.3	91
12	Csl Enhanced Buried Interface for Efficient and UVâ€Robust Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2103151.	19.5	91
13	In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics. EScience, 2021, 1, 91-97.	41.6	79
14	Zwitterionâ€Functionalized SnO ₂ Substrate Induced Sequential Deposition of Blackâ€Phase FAPbl ₃ with Rearranged Pbl ₂ Residue. Advanced Materials, 2022, 34, .	21.0	75
15	The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. Npj Flexible Electronics, 2018, 2, .	10.7	46
16	Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off. Scientific Reports, 2018, 8, 15496.	3.3	42
17	Understanding the Improvement in the Stability of a Self-Assembled Multiple-Quantum Well Perovskite Light-Emitting Diode. Journal of Physical Chemistry Letters, 2019, 10, 6857-6864.	4.6	42
18	Multiâ€Level Passivation of MAPbl ₃ Perovskite for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	36

#	Article	IF	CITATIONS
19	Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 3171-3175.	4.6	35
20	Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chemical Science, 2021, 12, 7231-7247.	7.4	31
21	Stable Cesium-Rich Formamidinium/Cesium Pure-lodide Perovskites for Efficient Photovoltaics. ACS Energy Letters, 2021, 6, 2735-2741.	17.4	31
22	Deepâ€Red Perovskite Lightâ€Emitting Diodes Based on Oneâ€Stepâ€Formed γâ€CsPbl ₃ Cuboid Crystallites. Advanced Materials, 2021, 33, e2105699.	21.0	30
23	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbl ₃ Perovskite. Angewandte Chemie, 2021, 133, 12459-12463.	2.0	24
24	Inorganic CsPbBr ₃ Perovskite Nanocrystals as Interfacial Ion Reservoirs to Stabilize FAPbI ₃ Perovskite for Efficient Photovoltaics. Advanced Energy Materials, 2022, 12, .	19.5	22
25	Decoupling engineering of formamidinium–cesium perovskites for efficient photovoltaics. National Science Review, 2022, 9, .	9.5	22
26	Inhomogeneous degradation in metal halide perovskites. Applied Physics Letters, 2017, 111, .	3.3	19
27	Lead Stabilization and Iodine Recycling of Lead Halide Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 16519-16525.	6.7	19
28	Lightâ€Emitting Transistors Based on Solutionâ€Processed Heterostructures of Selfâ€Organized Multipleâ€Quantumâ€Well Perovskite and Metalâ€Oxide Semiconductors. Advanced Electronic Materials, 2019, 5, 1800985.	5.1	18
29	5-Ammonium Valeric Acid Iodide to Stabilize MAPbI ₃ via a Mixed-Cation Perovskite with Reduced Dimension. Journal of Physical Chemistry Letters, 2020, 11, 8170-8176.	4.6	17
30	Synergistic stabilization of CsPbI3 inorganic perovskite via 1D capping and secondary growth. Journal of Energy Chemistry, 2022, 68, 387-392.	12.9	16
31	The Chemical Design in High-Performance Lead Halide Perovskite: Additive vs Dopant?. Journal of Physical Chemistry Letters, 2021, 12, 11636-11644.	4.6	13
32	Incorporation of Two-Dimensional WSe ₂ into MAPbI ₃ Perovskite for Efficient and Stable Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 6883-6888.	4.6	12
33	Cs-content-dependent organic cation exchange in FA1-Cs PbI3 perovskite. Journal of Energy Chemistry, 2022, 72, 539-544.	12.9	12
34	MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing. Research, 2021, 2021, 9765106.	5.7	8
35	High-Brightness Perovskite Microcrystalline Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2963-2968.	4.6	5
36	Stable Pure Iodide MA _{0.95} Cs _{0.05} PbI ₃ Perovskite toward Efficient 1.6 eV Bandgap Photovoltaics. Journal of Physical Chemistry Letters, 2022, 13, 5088-5093.	4.6	5

#	Article	IF	CITATIONS
37	Synergetic effects of DMA cation doping and Cl anion additives induced re-growth of MA _{1â^x} DMA _x Pbl ₃ perovskites. Sustainable Energy and Fuels, 2021, 5, 2860-2864.	4.9	4
38	10.1063/1.4999630.2., 2017, , .		0