Douglas W Kline

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8404721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Developmental Biology, 1992, 149, 80-89.	0.9	677
2	Regulation of Intracellular Calcium in the Mouse Egg: Calcium Release in Response to Sperm or Inositol Trisphosphate is Enhanced after Meiotic Maturation1. Biology of Reproduction, 1994, 51, 1088-1098.	1.2	214
3	Reorganization of the Endoplasmic Reticulum during Meiotic Maturation of the Mouse Oocyte. Developmental Biology, 1995, 170, 607-615.	0.9	170
4	Redistribution and Increase in Cortical Inositol 1,4,5-Trisphosphate Receptors after Meiotic Maturation of the Mouse Oocyte. Developmental Biology, 1996, 180, 489-498.	0.9	163
5	Calcium-dependent events at fertilization of the frog egg: Injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei. Developmental Biology, 1988, 126, 346-361.	0.9	153
6	Regulation of Intracellular Calcium in the Mouse Egg: Evidence for Inositol Trisphosphate-Induced Calcium Release, but not Calcium-Induced Calcium Release1. Biology of Reproduction, 1994, 50, 193-203.	1.2	117
7	Molecularly cloned mammalian glucosamine-6-phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. FASEB Journal, 1998, 12, 91-99.	0.2	115
8	The Cortical Endoplasmic Reticulum (ER) of the Mouse Egg: Localization of ER Clusters in Relation to the Generation of Repetitive Calcium Waves. Developmental Biology, 1999, 215, 431-442.	0.9	99
9	The wave of activation current in the Xenopus egg. Developmental Biology, 1985, 111, 471-487.	0.9	87
10	Evidence for the involvement of a pertussis toxin-insensitive G-protein in egg activation of the frog, Xenopus laevis. Developmental Biology, 1991, 143, 218-229.	0.9	80
11	Attributes and dynamics of the endoplasmic reticulum in mammalian eggs. Current Topics in Developmental Biology, 2000, 50, 125-154.	1.0	63
12	Analysis of Ppp1cc-Null Mice Suggests a Role for PP1gamma2 in Sperm Morphogenesis1. Biology of Reproduction, 2007, 76, 992-1001.	1.2	54
13	Targeted Disruption of Glycogen Synthase Kinase 3a (Gsk3a) in Mice Affects Sperm Motility Resulting in Male Infertility1. Biology of Reproduction, 2015, 92, 65.	1.2	54
14	Calcium-Independent, Meiotic Spindle-Dependent Metaphase-to-Interphase Transition in Phorbol Ester-Treated Mouse Eggs. Developmental Biology, 1995, 171, 111-122.	0.9	43
15	The Timing of Cortical Granule Fusion, Content Dispersal, and Endocytosis during Fertilization of the Hamster Egg: An Electrophysiological and Histochemical Study. Developmental Biology, 1994, 162, 277-287.	0.9	41
16	Maintenance of Metaphase in Colcemid-Treated Mouse Eggs by Distinct Calcium- and 6-Dimethylaminopurine (6-DMAP)-Sensitive Mechanisms. Developmental Biology, 1995, 167, 329-337.	0.9	39
17	Proteomic Analysis of Bovine Sperm YWHA Binding Partners Identify Proteins Involved in Signaling and Metabolism1. Biology of Reproduction, 2008, 79, 1183-1191.	1.2	36
18	A highly localized activation current yet widespread intracellular calcium increase in the egg of the frog, Discoglossus pictus. Developmental Biology, 1988, 130, 120-132.	0.9	35

DOUGLAS W KLINE

#	Article	IF	CITATIONS
19	Release of mouse eggs from metaphase arrest by protein synthesis inhibition in the absence of a calcium signal or microtubule assembly. Molecular Reproduction and Development, 1995, 41, 264-273.	1.0	31
20	lsoform-specific requirement for GSK3α in sperm for male fertilityâ€. Biology of Reproduction, 2018, 99, 384-394.	1.2	30
21	Absence of an intracellular pH change following fertilisation of the mouse egg. Zygote, 1995, 3, 305-311.	0.5	29
22	Activation of the mouse egg. Theriogenology, 1996, 45, 81-90.	0.9	29
23	Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development. BMC Research Notes, 2012, 5, 57.	0.6	29
24	Fertilization potential and polyspermy prevention in the egg of the nemertean,Cerebratulus lacteus. The Journal of Experimental Zoology, 1985, 236, 45-52.	1.4	27
25	A calcium-activated sodium conductance contributes to the fertilization potential in the egg of the nemertean worm Cerebratulus lacteus. Developmental Biology, 1986, 117, 184-193.	0.9	25
26	Evidence for the requirement of 14-3-3eta (YWHAH) in meiotic spindle assembly during mouse oocyte maturation. BMC Developmental Biology, 2013, 13, 10.	2.1	25
27	Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility. PLoS ONE, 2015, 10, e0141961.	1.1	25
28	YWHA (14-3-3) protein isoforms and their interactions with CDC25B phosphatase in mouse oogenesis and oocyte maturation. BMC Developmental Biology, 2019, 19, 20.	2.1	24
29	Molecularly cloned mammalian glucosamineâ€6â€phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. FASEB Journal, 1998, 12, 91-99.	0.2	23
30	G-proteins and egg activation. Cell Differentiation and Development, 1988, 25, 15-18.	0.4	21
31	Phosphorylation-Dependent Interaction of Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein (YWHA) with PADI6 Following Oocyte Maturation in Mice1. Biology of Reproduction, 2008, 79, 337-347.	1.2	21
32	The cortical reaction in the egg of Discoglossus pictus: A study of the changes in the endoplasmic reticulum at activation. Developmental Biology, 1988, 130, 108-119.	0.9	20
33	Regulators of the protein phosphatase PP1Î ³ 2, PPP1R2, PPP1R7, and PPP1R11 are involved in epididymal sperm maturation. Journal of Cellular Physiology, 2019, 234, 3105-3118.	2.0	18
34	Quantitative Microinjection of Mouse Oocytes and Eggs. Methods in Molecular Biology, 2009, 518, 135-156.	0.4	18
35	Cyclic AMP and glycogen synthase kinase 3 form a regulatory loop in spermatozoa. Journal of Cellular Physiology, 2018, 233, 7239-7252.	2.0	16
36	Identification of testis 14–3-3 binding proteins by tandem affinity purification. Spermatogenesis, 2011, 1, 354-365.	0.8	13

DOUGLAS W KLINE

#	Article	IF	CITATIONS
37	The protein phosphatase isoform PP1γ1 substitutes for PP1γ2 to support spermatogenesis but not normal sperm function and fertilityâ€. Biology of Reproduction, 2019, 100, 721-736.	1.2	9
38	Roles of glycogen synthase kinase 3 alpha and calcineurin in regulating the ability of sperm to fertilize eggs. FASEB Journal, 2020, 34, 1247-1269.	0.2	9
39	Receptors, G-Proteins, and Activation of the Amphibian Egg. , 1990, , 529-541.		7
40	The protein YWHAE (14â€3â€3 epsilon) in spermatozoa is essential for male fertility. Andrology, 2021, 9, 312-328.	1.9	6
41	Correction: evidence for the requirement of 14-3-3eta (YWHAH) in meiotic spindle assembly during mouse oocyte maturation. BMC Developmental Biology, 2014, 14, 20.	2.1	5
42	Chapter 3 Electrical Characteristics of Oocytes and Eggs. Current Topics in Membranes, 1991, , 89-120.	0.5	4
43	Activation of the Egg by the Sperm. BioScience, 1991, 41, 89-95.	2.2	2
44	ISOLATION AND IDENTIFICATION OF 14-3-3 BINDING PROTEINS IN BOVINE SPERMATOZOA. Biology of Reproduction, 2007, 77, 169-169.	1.2	0
45	Cell Signaling and Regulation of Exocytosis at Fertilization of the Egg. , 1993, , 75-102.		0