Javier Telis-Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8404503/publications.pdf

Version: 2024-02-01

140 papers 3,042 citations

30 h-index 214527 47 g-index

142 all docs 142 docs citations

times ranked

142

2807 citing authors

#	Article	IF	CITATIONS
1	Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 2007, 82, 246-252.	2.7	201
2	Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations. International Journal of Food Properties, 2007, 10, 185-195.	1.3	188
3	Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochimica Acta, 2000, 343, 49-56.	1.2	95
4	Thermophysical properties of Brazilian orange juice as affected by temperature and water content. Journal of Food Engineering, 1998, 38, 27-40.	2.7	86
5	Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Science, 2018, 145, 55-62.	2.7	75
6	Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta, 2012, 528, 63-71.	1.2	74
7	Water Sorption Enthalpy-Entropy Compensation Based on Isotherms of Plum Skin and Pulp. Journal of Food Science, 2000, 65, 680-680.	1.5	71
8	AIR-DRYING OF FRESH AND OSMOTICALLY PRE-TREATED PINEAPPLE SLICES: FIXED AIR TEMPERATURE VERSUS FIXED SLICE TEMPERATURE DRYING KINETICS. Drying Technology, 2001, 19, 2175-2191.	1.7	67
9	Thermophysical Properties of Cotton, Canola, Sunflower and Soybean Oils as a Function of Temperature. International Journal of Food Properties, 2013, 16, 1620-1629.	1.3	64
10	Density, heat capacity and thermal conductivity of liquid egg products. Journal of Food Engineering, 2006, 74, 186-190.	2.7	59
11	Influence of alternative drying aids on water sorption of spray dried mango mix powders: A thermodynamic approach. Food and Bioproducts Processing, 2015, 93, 19-28.	1.8	50
12	Thermodynamic and Quality Properties of Lemon Juice Powder as Affected by Maltodextrin and Arabic Gum. Drying Technology, 2007, 25, 2035-2045.	1.7	48
13	Laminar flow of soursop juice through concentric annuli: Friction factors and rheology. Journal of Food Engineering, 2007, 78, 1343-1354.	2.7	48
14	Friction factors and rheological properties of orange juice. Journal of Food Engineering, 1999, 40, 101-106.	2.7	45
15	Rheological properties and fluid dynamics of egg yolk. Journal of Food Engineering, 2006, 74, 191-197.	2.7	45
16	Structural and Physicochemical Characteristics of Lintnerized Native and Sour Cassava Starches. Starch/Staerke, 2002, 54, 469-475.	1.1	44
17	Salting kinetics and salt diffusivities in farmed Pantanal caiman muscle. Pesquisa Agropecuaria Brasileira, 2003, 38, 529-535.	0.9	43
18	Thermophysical properties of mango pulp (Mangifera indica L. cv. Tommy Atkins). Journal of Food Engineering, 2010, 97, 563-568.	2.7	42

#	Article	IF	Citations
19	Osmotic dehydration process for low temperature blanched pumpkin. Journal of Food Engineering, 2011, 105, 56-64.	2.7	42
20	Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread qualitiy. Food Chemistry, 2014, 143, 139-146.	4.2	41
21	Organic amaranth starch: A study of its technological properties after heat-moisture treatment. Food Chemistry, 2018, 264, 435-442.	4.2	40
22	Solids Rheology for Dehydrated Food and Biological Materials. Drying Technology, 2005, 23, 759-780.	1.7	39
23	Influence of Drying Conditions on Ascorbic Acid during Convective Drying of Whole Persimmons. Drying Technology, 2007, 25, 891-899.	1.7	39
24	Water adsorption isotherms and thermodynamic properties of cassava bagasse. Thermochimica Acta, 2016, 632, 79-85.	1.2	39
25	EFFECT OF CHEMICAL PRETREATMENT ON THE PHYSICAL PROPERTIES OF DEHYDRATED GRAPES. Drying Technology, 1999, 17, 1215-1226.	1.7	38
26	Rheology and fluid dynamics properties of sugarcane juice. Biochemical Engineering Journal, 2011, 53, 260-265.	1.8	35
27	Impact of ultrasound and potassium chloride on the physicochemical and sensory properties in low sodium restructured cooked ham. Meat Science, 2020, 165, 108130.	2.7	35
28	RHEOLOGICAL PROPERTIES AND FLUID DYNAMICS OF COFFEE EXTRACT. Journal of Food Process Engineering, 2001, 24, 217-230.	1.5	34
29	Influence of Temperature and Water and Fat Contents on the Thermophysical Properties of Milk. Journal of Chemical & Engineering Data, 2002, 47, 1488-1491.	1.0	33
30	Effect of drying method on the adsorption isotherms and isosteric heat of passion fruit pulp powder. Food Science and Technology, 2010, 30, 993-1000.	0.8	33
31	Non-Newtonian Heat Transfer on a Plate Heat Exchanger with Generalized Configurations. Chemical Engineering and Technology, 2007, 30, 21-26.	0.9	32
32	MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS. Ciencia E Agrotecnologia, 2015, 39, 291-300.	1.5	32
33	Friction losses in valves and fittings for power-law fluids. Brazilian Journal of Chemical Engineering, 2003, 20, 455-463.	0.7	30
34	Sorption isotherms of alligator's meat (Caiman crocodilus yacare). Journal of Food Engineering, 2002, 52, 201-206.	2.7	29
35	THERMODYNAMIC MODELS FOR WATER SORPTION BY GRAPE SKIN AND PULP. Drying Technology, 1999, 17, 962-974.	1.7	28
36	Temperature and water content influence on thermophysical properties of coffee extract. International Journal of Food Properties, 2000, 3, 375-384.	1.3	28

#	Article	IF	Citations
37	INFLUENCE OF DRYING CONDITIONS ON THE RHEOLOGICAL PROPERTIES OF PRUNES. Drying Technology, 2002, 20, 1485-1502.	1.7	27
38	CONTINUOUS PASTEURIZATION OF EGG YOLK: THERMOPHYSICAL PROPERTIES AND PROCESS SIMULATION. Journal of Food Process Engineering, 2005, 28, 181-203.	1.5	27
39	Sorption Isotherm, Glass Transitions and State Diagram for Freeze-dried Plum Skin and Pulp. Food Science and Technology International, 2006, 12, 181-187.	1.1	26
40	Rheological and thermophysical properties of blackberry juice. Food Science and Technology, 2007, 27, 589-595.	0.8	26
41	The effect of power-ultrasound on the pretreatment of acidified aqueous solutions of banana flower-stalk: Structural, chemical and statistical analysis. Industrial Crops and Products, 2015, 66, 52-61.	2.5	26
42	Ultrasound-assisted hydration of wheat grains at different temperatures and power applied: Effect on acoustic field, water absorption and germination. Chemical Engineering and Processing: Process Intensification, 2020, 155, 108045.	1.8	25
43	Antioxidant effect of acerola fruit powder, rosemary and licorice extract in caiman meat nuggets containing mechanically separated caiman meat. Meat Science, 2021, 173, 108406.	2.7	24
44	Physicothermal Properties of Aqueous Sodium Chloride Solutions. Journal of Food Process Engineering, 2015, 38, 234-242.	1.5	23
45	PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF AVOCADO OILS. Ciencia E Agrotecnologia, 2015, 39, 390-400.	1.5	23
46	Morphological, thermal and physicochemical characteristics of small granules starch from Mirabilis jalapa L. Thermochimica Acta, 2015, 602, 1-7.	1.2	23
47	Enthalpy-entropy compensation based on isotherms of mango. Food Science and Technology, 2005, 25, 297-303.	0.8	22
48	Water adsorption isotherms and isosteric sorption heat of spray-dried and freeze-dried dehydrated passion fruit pulp with additives and skimmed milk. Ciencia E Agrotecnologia, 2011, 35, 1196-1203.	1.5	22
49	Ultrasonic assessment of fresh cheese composition. Journal of Food Engineering, 2011, 103, 137-146.	2.7	22
50	THERMAL PROPERTIES OF PASSION FRUIT JUICE AS AFFECTED BY TEMPERATURE AND WATER CONTENT. Journal of Food Process Engineering, 2004, 27, 413-431.	1.5	21
51	Technological and diffusion properties in the wet salting of beef assisted by ultrasound. LWT - Food Science and Technology, 2021, 149, 112036.	2.5	21
52	Friction losses in valves and fittings for liquid food products. Food and Bioproducts Processing, 2011, 89, 375-382.	1.8	19
53	Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines. Journal of the Science of Food and Agriculture, 2015, 95, 1421-1427.	1.7	19
54	Determination of the rheological behavior and thermophysical properties of malbec grape juice concentrates (Vitis vinifera). Food Research International, 2020, 137, 109431.	2.9	19

#	Article	IF	Citations
55	Water sorption properties of papaya seeds (Carica papaya L.) formosa variety: An assessment under storage and drying conditions. LWT - Food Science and Technology, 2021, 138, 110458.	2.5	19
56	Viscoelastic behavior of persimmons dried at constant air temperature. LWT - Food Science and Technology, 2005, 38, 143-150.	2.5	18
57	Effect of apparent viscosity on fluidized bed drying process parameters of guava pulp. Journal of Food Engineering, 2007, 80, 1096-1106.	2.7	18
58	Study of adsorption isotherms of green coconut pulp. Food Science and Technology, 2013, 33, 68-74.	0.8	18
59	Experimental study of physical and rheological properties of grape juice using different temperatures and concentrations. Part II: Merlot. Food Research International, 2018, 105, 905-912.	2.9	18
60	Influence of temperature and concentration on thermophysical properties of yellow mombin (Spondias mombin, L.). European Food Research and Technology, 2006, 223, 585-593.	1.6	17
61	Rheological Properties of Frozen Concentrated Orange Juice (FCOJ) as a Function of Concentration and Subzero Temperatures. International Journal of Food Properties, 2007, 10, 829-839.	1.3	17
62	Modeling Thermal Conductivity, Specific Heat, and Density of Milk: A Neural Network Approach. International Journal of Food Properties, 2004, 7, 531-539.	1.3	16
63	Freezing Point and Thermal Conductivity of Tropical Fruit Pulps: Mango and Papaya. International Journal of Food Properties, 2007, 10, 73-84.	1.3	16
64	Density and rheological parameters of goat milk. Food Science and Technology, 2012, 32, 381-385.	0.8	16
65	Effect of intermittent high-intensity sonication and temperature on barley steeping for malt production. Journal of Cereal Science, 2018, 82, 138-145.	1.8	16
66	Influence of Fluid Concentration on Freezing Point Depression and Thermal Conductivity of Frozen Orange Juice. International Journal of Food Properties, 2003, 6, 543-556.	1.3	15
67	Effect of apparent viscosity on the pressure drop during fluidized bed drying of soursop pulp. Chemical Engineering and Processing: Process Intensification, 2007, 46, 684-694.	1.8	15
68	Modelling Thermodynamic Properties of Banana Waste by Analytical Derivation of Desorption Isotherms. International Journal of Food Engineering, 2012, 8, .	0.7	15
69	Density and rheology of acid suspensions of peanut waste in different conditions: An engineering basis for bioethanol production. Powder Technology, 2016, 294, 168-176.	2.1	15
70	Influence of temperature and chemical composition on water sorption isotherms for dry-cured ham. LWT - Food Science and Technology, 2020, 123, 109112.	2.5	15
71	Influence of high-intensity ultrasound application on the kinetics of sugar release from acid suspensions of artichoke (Cynara scolymus) biomass. Chemical Engineering and Processing: Process Intensification, 2019, 145, 107681.	1.8	14
72	Thermophysical Properties of Lemon Juice as Affected by Temperature and Water Content. Journal of Chemical & C	1.0	13

#	Article	IF	Citations
73	INFLUENCE OF ENCAPSULATING MATERIALS ON WATER SORPTION ISOTHERMS OF VACUUM-DRIED PERSIMMON PULP POWDER. Journal of Food Processing and Preservation, 2011, 35, 423-431.	0.9	13
74	Density, Refractive Index, Apparent Specific Volume, and Electrical Conductivity of Aqueous Solutions of Poly(ethylene glycol) 1500 at Different Temperatures. Journal of Chemical & Engineering Data, 2014, 59, 339-345.	1.0	13
75	Dynamic Viscosity of Binary and Ternary Mixtures Containing Poly(Ethylene Glycol), Potassium Phosphate, and Water. Journal of Chemical & Engineering Data, 2004, 49, 1340-1343.	1.0	12
76	Changes of Density, Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Plums During Drying. International Journal of Food Properties, 2005, 8, 233-242.	1.3	12
77	Thermodynamic properties of water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Food Science and Technology, 2013, 33, 199-208.	0.8	11
78	Drying rates of Rubi grapes submitted to chemical pretreatments for raisin production. Pesquisa Agropecuaria Brasileira, 2006, 41, 503-509.	0.9	11
79	ELEVATION ON BOINLING POINT OF COFFE EXTRACT. Brazilian Journal of Chemical Engineering, 2002, 19, 119-126.	0.7	11
80	Thermophysical Properties of Industrial Sugar Cane Juices for the Production of Bioethanol. Journal of Chemical & Engineering Data, 2010, 55, 1200-1203.	1.0	10
81	Optimization of an Airâ€Drying Process to Obtain a Dehydrated Naranjita (<i>Citrus Mitis</i> B.) Pomace Product With High Bioactive Compounds and Antioxidant Capacity. Journal of Food Process Engineering, 2017, 40, e12338.	1.5	10
82	Sorption isotherms and thermodynamic properties of wheat malt under storage conditions. Journal of Food Process Engineering, 2021, 44, e13784.	1.5	10
83	Influência da temperatura e da concentração do cloreto de sódio (NaCl) nas isotermas de sorção da carne de tambaqui (Colossoma macroparum). Food Science and Technology, 2006, 26, 453-458.	0.8	9
84	Laminar forced convection to a pseudoplastic fluid food in circular and annular ducts. International Communications in Heat and Mass Transfer, 2006, 33, 451-457.	2.9	9
85	Non-newtonian flow and pressure drop of pineapple juice in a plate heat exchanger. Brazilian Journal of Chemical Engineering, 2010, 27, 563-571.	0.7	9
86	Sorption isotherms and thermodynamic properties of grated <scp>P</scp> armesan cheese. International Journal of Food Science and Technology, 2016, 51, 250-259.	1.3	9
87	PHYSICAL, MICROSTRUCTURAL AND SENSORY CHARACTERISTICS OF EXTRUDED AND MICROWAVE-EXPANDED SNACKS ADDED WITH DEHYDRATED SQUASH. Revista Mexicana De Ingeniera Quimica, 2018, 17, 805-821.	0.2	9
88	Rheology of acid suspensions containing cassava bagasse: Effect of biomass loading, acid content and temperature. Powder Technology, 2019, 354, 271-280.	2.1	8
89	Acoustic fields of acid suspensions containing cassava bagasse: Influence of physical properties on acoustic attenuation. Applied Acoustics, 2021, 177, 107922.	1.7	8
90	Friction Losses in Valves and Fittings for Viscoplastic Fluids. Canadian Journal of Chemical Engineering, 2005, 83, 186-193.	0.9	7

#	Article	IF	CITATIONS
91	Propiedades termodin $ ilde{A}_i$ micas de sorci $ ilde{A}^3$ n de agua de la pulpa de lulo en polvo con encapsulantes. Food Science and Technology, 2009, 29, 911-918.	0.8	7
92	Sorption isotherms and drying kinetics of grapefruit seeds - doi: 10.4025/actascitechnol.v35i4.13658. Acta Scientiarum - Technology, 2013, 35, .	0.4	7
93	Study of the specific heat capacity of biomass from banana waste for application in the secondâ€generation ethanol industry. Environmental Progress and Sustainable Energy, 2015, 34, 1221-1228.	1.3	7
94	Study of thermodynamic water properties and moisture sorption hysteresis of mango skin. Food Science and Technology, 2015, 35, 157-166.	0.8	7
95	Experimental study of physical and rheological properties of grape juice using different temperatures and concentrations. Part I: Cabernet Sauvignon. Food Research International, 2017, 100, 724-730.	2.9	7
96	Determination of acoustic fields in acidic suspensions of peanut shell during pretreatment with high-intensity ultrasound. Brazilian Journal of Chemical Engineering, 2017, 34, 385-394.	0.7	7
97	Thermophysical properties of carbohydrate solutions: Correlation between thermal and transport properties. Journal of Food Process Engineering, 2020, 43, e13483.	1.5	7
98	Thermal Evaporation: Representation of Rise in Boiling Point of Grapefruit Juice. Food Science and Technology International, 2007, 13, 225-229.	1.1	6
99	Influence of Fluid Concentration on the Elevation of Boiling Point of Blackberry Juice. International Journal of Food Properties, 2008, 11, 865-875.	1.3	6
100	Forced convection to laminar flow of liquid egg yolk in circular and annular ducts. Brazilian Journal of Chemical Engineering, 2009, 26, 287-298.	0.7	6
101	FLOW PROPERTIES AND TUBE FRICTION FACTOR OF MILK CREAM: INFLUENCE OF TEMPERATURE AND FAT CONTENT. Journal of Food Process Engineering, 2010, 33, 820-836.	1.5	6
102	Effect of maltodextrin on the freezing point and thermal conductivity of uvaia pulp (Eugenia) Tj ETQq0 0 0 rgBT	Overlock 1	10 ₆ Tf 50 302
103	Thermophysical and rheological properties of dulce de leche with and without coconut flakes as a function of temperature. Food Science and Technology, 2013, 33, 93-98.	0.8	6
104	Density, thermal expansion coefficient, and rheological behaviour of meat extract under different temperatures and solids concentrations. Canadian Journal of Chemical Engineering, 2016, 94, 988-994.	0.9	6
105	Rheology and Fluid Dynamic of Egg White: Effect of Thixotropy on Engineering Design. Journal of Food Process Engineering, 2017, 40, e12277.	1.5	6
106	Thermophysical properties of different olive oils: Evaluating density and rheology through a fluid dynamic approach. European Journal of Lipid Science and Technology, 2017, 119, 1600316.	1.0	6
107	Water sorption isotherms of cooked hams as affected by temperature and chemical composition. Food Science and Technology, 2019, 39, 677-683.	0.8	6
108	Physical properties of barley grains at hydration and drying conditions of malt production. Journal of Food Process Engineering, 2021, 44, e13644.	1.5	6

#	Article	IF	CITATIONS
109	Recent advances in the application of ultrasound to meat and meat products: Physicochemical and sensory aspects. Food Reviews International, 2023, 39, 4529-4544.	4.3	6
110	Propiedades termofÃsicas del jugo concentrado de lulo a temperaturas por encima del punto de congelación. Food Science and Technology, 2010, 30, 90-95.	0.8	5
111	Friction factors, convective heat transfer coefficients and the Colburn analogy for industrial sugarcane juices. Biochemical Engineering Journal, 2012, 60, 111-118.	1.8	5
112	Rheological Behavior of Binary Aqueous Solutions of Poly(ethylene glycol) of 1500 g·mol ^{–1} as Affected by Temperature and Polymer Concentration. Journal of Chemical & Lamp; Engineering Data, 2013, 58, 838-844.	1.0	5
113	Thermodynamic properties of water adsorption from orange peels. Journal of Bioenergy and Food Science, 2015, 2, 72-81.	0.6	5
114	Modelling of Drying Kinetics During Non-isothermal Convective Drying of Passion Fruit Seeds. Japan Journal of Food Engineering, 2016, 17, 117-121.	0.1	4
115	Isotherms and isosteric heat of sorption of two varieties of Peruvian quinoa. Scientia Agropecuaria, 2016, 7, 409-417.	0.5	4
116	Moisture Sorption Characteristics of Pineapple Processing Waste: Shell and Central Cylinder. Journal of Food Process Engineering, 2014, 37, 100-110.	1.5	3
117	Rheological behavior of molasses for application in industry. Environmental Progress and Sustainable Energy, 2016, 35, 1545-1552.	1.3	3
118	Identification of acoustic fields in aqueous biomass solutions of banana waste pretreated by power ultrasound. Biomass Conversion and Biorefinery, 2018, 8, 87-96.	2.9	3
119	Thermophysical properties of dilute acid slurries of cassava bagasse as a function of biomass loading, acid concentration, and temperature. Environmental Progress and Sustainable Energy, 2021, 40, e13543.	1.3	3
120	Mass transfer in beef: effect of crossbreeding and ultrasound application. Scientia Agricola, 2021, 78, .	0.6	3
121	Transport properties of saturated sucrose and maltitol solutions as affected by temperature. Journal of Molecular Liquids, 2021, 336, 116254.	2.3	3
122	Properties of isomaltulose (Palatinose®) – An emerging healthy carbohydrate: Effect of temperature and solute concentration. Journal of Molecular Liquids, 2022, 347, 118304.	2.3	3
123	Rheological Behavior of Biopolymer Suspensions. Contemporary Food Engineering, 2012, , 69-110.	0.2	2
124	Study of the enthalpy-entropy mechanism from water sorption of orange seeds (C. sinensis cv.) Tj ETQq0 0 0 rgBT Food Science and Technology, 2013, 33, 95-101.	/Overlock 0.8	10 Tf 50 14 2
125	Physical, Thermal and Water-Sorption Properties of Passion Fruit Seeds. International Journal of Food Engineering, 2014, 10, 785-798.	0.7	2
126	Ultrasound-assisted acid hydrolysis of cassava (Manihot esculenta) bagasse: Kinetics, acoustic field and structural effects. Ultrasonics Sonochemistry, 2021, 70, 105318.	3.8	2

#	Article	IF	CITATIONS
127	Hydration kinetics of four quinoa (Chenopodium quinoa Willd.) varieties. Revista Colombiana De Investigaciones Agroindustriales, 0, 3, 23.	0.1	2
128	RHEOLOGICAL CHARACTERIZATION OF SUSPENSIONS OF SUCROSE CRYSTALS IN SATURATED SUCROSE SOLUTIONS. Journal of Food Process Engineering, 2010, 33, 992-1009.	1.5	1
129	Rheological Behavior of Yeast Paste from the Ethanol Industry. Industrial Biotechnology, 2015, 11, 160-166.	0.5	1
130	Thixotropy of sweetened condensed milk applied to flow fluid dynamics analysis of cylindrical pipes. Journal of Food Process Engineering, 2020, 43, e13397.	1.5	1
131	Ca $ ilde{A}$ da de presi $ ilde{A}^3$ n en lecho fijo de cubos de papa, remolacha y zanahoria considerando encogimiento. Food Science and Technology, 2003, 23, 110-115.	0.8	O
132	SUGAR VARIATION IN 'ROCHA' PEARS AND PENICILLIUM EXPANSUM REDUCTION BY AUREOBASIDIUM PULLULANS. Acta Horticulturae, 2008, , 929-934.	0.1	0
133	EFFECT OF HEAT TREATMENT ON THE RHEOLOGICAL PROPERTIES AND COLOR OF PUMPKINS (Cucurbita) Tj ETC	2q1,10.78	84314 rgBT /(
134	Influence of Fluid Concentration on Freezing-Point Depression and Thermal Conductivity of Frozen Physalis Juice. Food Engineering Series, 2015, , 393-403.	0.3	0
135	Boiling point and specific heat of meat extract. International Journal of Food Properties, 0, , 1-11.	1.3	O
136	ANTAGONIST ACTIVITY BETWEEN AUREOBASIDIUM PULLULANS AND PENICILLIUM EXPANSUM IN PYRUS COMMUNIS L. 'ROCHA' - IMPLICATIONS ON THE ANTIOXIDANT DEFENCE SYSTEM. Acta Horticulturae, 2012, , 393-400.	0.1	0
137	Moisture sorption isotherms and isosteric heat sorption of habanero pepper (Capsicum chÃnense) dehydrated powder. , 0, , .		O
138	Salting kinetics, salt diffusivities and proximate composition in osmotically dehydrated Pirarucu muscle. , 0 , , .		0
139	The effect of encapsulants on the heat of sorption in vacuum-dried caj \tilde{A}_i powder. Revista Ciencia Agronomica, 2019, 50, .	0.1	O

 $Influ\tilde{A}^{a}ncia\ da\ temperatura\ no\ comportamento\ reol\tilde{A}^{3}gico\ de\ geleias\ comerciais\ de\ cupua\tilde{A}\\ \$u\ (Theobroma)\ Tj\ ETQaOOO\ 0\ rgBT/Overlock$

140