Ian J Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8404365/publications.pdf Version: 2024-02-01

IAN LANANG

#	Article	IF	CITATIONS
1	Isolation by environment. Molecular Ecology, 2014, 23, 5649-5662.	2.0	646
2	EXAMINING THE FULL EFFECTS OF LANDSCAPE HETEROGENEITY ON SPATIAL GENETIC VARIATION: A MULTIPLE MATRIX REGRESSION APPROACH FOR QUANTIFYING GEOGRAPHIC AND ECOLOGICAL ISOLATION. Evolution; International Journal of Organic Evolution, 2013, 67, 3403-3411.	1.1	340
3	Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 2013, 16, 175-182.	3.0	248
4	Environmental filtering by <scp>pH</scp> and soil nutrients drives community assembly in fungi at fine spatial scales. Molecular Ecology, 2017, 26, 6960-6973.	2.0	223
5	Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 2010, 19, 447-458.	2.0	191
6	Landscape genetics and least ost path analysis reveal unexpected dispersal routes in the California tiger salamander (<i>Ambystoma californiense</i>). Molecular Ecology, 2009, 18, 1365-1374.	2.0	174
7	Navigating the pitfalls and promise of landscape genetics. Molecular Ecology, 2016, 25, 849-863.	2.0	136
8	Recognizing the temporal distinctions between landscape genetics and phylogeography. Molecular Ecology, 2010, 19, 2605-2608.	2.0	121
9	RAPID COLOR EVOLUTION IN AN APOSEMATIC SPECIES: A PHYLOGENETIC ANALYSIS OF COLOR VARIATION IN THE STRIKINGLY POLYMORPHIC STRAWBERRY POISON-DART FROG. Evolution; International Journal of Organic Evolution, 2008, 62, 2742-2759.	1.1	116
10	Genome-enabled development of DNA markers for ecology, evolution and conservation. Molecular Ecology, 2010, 19, 2184-2195.	2.0	114
11	Trapped within the city: integrating demography, time since isolation and populationâ€specific traits to assess the genetic effects of urbanization. Molecular Ecology, 2017, 26, 1498-1514.	2.0	73
12	Fineâ€scale population structure in a desert amphibian: landscape genetics of the black toad (<i>Bufo) Tj ETQq0</i>	0 0 rgBT 2.0	/Overlock 10
13	Phylogeography of the Pygmy Rain Frog (Pristimantis ridens) across the lowland wet forests of isthmian Central America. Molecular Phylogenetics and Evolution, 2008, 47, 992-1004.	1.2	61
14	Landscape Genomics to Enable Conservation Actions: The California Conservation Genomics Project. Journal of Heredity, 2022, 113, 577-588.	1.0	59
15	INVERSELY RELATED APOSEMATIC TRAITS: REDUCED CONSPICUOUSNESS EVOLVES WITH INCREASED TOXICITY IN A POLYMORPHIC POISON-DART FROG. Evolution; International Journal of Organic Evolution, 2011, 65, 1637-1649.	1.1	56
16	Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Molecular Ecology, 2012, 21, 3879-3892.	2.0	50
17	Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports, 2016, 6, 24041.	1.6	48
18	Hybridization promotes color polymorphism in the aposematic harlequin poison frog,	0.8	46

Hybridization promotes color polymorphism in the aposematic harlequin poison frog, <i><scp>O</scp>ophaga histrionica</i>. Ecology and Evolution, 2013, 3, 4388-4400. 18

Ian J Wang

#	Article	IF	CITATIONS
19	Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. Population Genomics, 2017, , 261-322.	0.2	46
20	Environmental and topographic variables shape genetic structure and effective population sizes in the endangered Yosemite toad. Diversity and Distributions, 2012, 18, 1033-1041.	1.9	45
21	Effective population size is strongly correlated with breeding pond size in the endangered California tiger salamander, Ambystoma californiense. Conservation Genetics, 2011, 12, 911-920.	0.8	42
22	The value of spaceâ€forâ€time substitution for studying fineâ€scale microevolutionary processes. Ecography, 2018, 41, 1456-1468.	2.1	40
23	Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Molecular Ecology, 2011, 20, 2480-2482.	2.0	36
24	Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the <i>Anolis</i> adaptive radiation. Evolution; International Journal of Organic Evolution, 2019, 73, 231-244.	1.1	34
25	Topographic path analysis for modelling dispersal and functional connectivity: Calculating topographic distances using the <scp>topoDistance r</scp> package. Methods in Ecology and Evolution, 2020, 11, 265-272.	2.2	34
26	DETERMINISM IN THE DIVERSIFICATION OF HISPANIOLAN TRUNK-GROUND ANOLES (<i>ANOLIS) Tj ETQq0 0 (3175-3190.</i>) rgBT /Over 1.1	lock 10 Tf 50 29
27	Genomeâ€wide epigenetic isolation by environment in a widespread <i>Anolis</i> lizard. Molecular Ecology, 2020, 29, 40-55.	2.0	25
28	Cannabis, an emerging agricultural crop, leads to deforestation and fragmentation. Frontiers in Ecology and the Environment, 2017, 15, 495-501.	1.9	24
29	Phylogeography of a widespread lizard complex reflects patterns of both geographic and ecological isolation. Molecular Ecology, 2019, 28, 644-657.	2.0	23
30	Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Molecular Ecology, 2019, 28, 4573-4591.	2.0	20
31	Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict <i>Euptelea</i> (Eupteleaceae). Evolutionary Applications, 2020, 13, 2038-2055.	1.5	19
32	Population genetic and fieldâ€ecological analyses return similar estimates of dispersal over space and time in an endangered amphibian. Evolutionary Applications, 2017, 10, 630-639.	1.5	18
33	Inferring spatial patterns and drivers of population divergence of Neolitsea sericea (Lauraceae), based on molecular phylogeography and landscape genomics. Molecular Phylogenetics and Evolution, 2018, 126, 162-172.	1.2	18
34	Fine-scale genetic structure in a salamander with two reproductive modes: Does reproductive mode affect dispersal?. Evolutionary Ecology, 2018, 32, 699-732.	0.5	17
35	Habitat use, interspecific competition and phylogenetic history shape the evolution of claw and toepad morphology in Lesser Antillean anoles. Biological Journal of the Linnean Society, 2020, 129, 630-643.	0.7	17
36	Geonomics: Forward-Time, Spatially Explicit, and Arbitrarily Complex Landscape Genomic Simulations. Molecular Biology and Evolution, 2021, 38, 4634-4646.	3.5	15

Ian J Wang

#	Article	IF	CITATIONS
37	Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biology, 2017, 17, 200.	1.6	13
38	Phenotypic and genomic diversification with isolation by environment along elevational gradients in a neotropical treefrog. Molecular Ecology, 2021, 30, 4062-4076.	2.0	12
39	Reference Genome of the Northwestern Pond Turtle, <i>Actinemys marmorata</i> . Journal of Heredity, 2022, 113, 624-631.	1.0	9
40	Highly polymorphic microsatellite markers for the highly polymorphic strawberry poison-dart frog and some of its congeners. Conservation Genetics, 2009, 10, 2033-2036.	0.8	8
41	Sodium ion channel alkaloid resistance does not vary with toxicity in aposematic Dendrobates poison frogs: An examination of correlated trait evolution. PLoS ONE, 2018, 13, e0194265.	1.1	6
42	Trehalose improves PCR amplification of vertebrate nuclear DNA from historical allozymes. Conservation Genetics Resources, 2018, 10, 313-315.	0.4	4
43	Endemism, invasion, and overseas dispersal: the phylogeographic history of the Lesser Antillean frog, Eleutherodactylus iohnstonei. Biological Invasions. 2022. 24. 2707-2722.	1.2	3