
Liang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/840406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal Oxide Hollow Nanostructures for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 1903-1911.	11.1	1,414
2	Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 2019, 48, 285-309.	18.7	685
3	Doubleâ€Shelled CoMn ₂ O ₄ Hollow Microcubes as Highâ€Capacity Anodes for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 745-748.	11.1	665
4	Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nature Communications, 2017, 8, 14264.	5.8	588
5	Highly Durable Na ₂ V ₆ O ₁₆ ·1.63H ₂ O Nanowire Cathode for Aqueous Zinc-Ion Battery. Nano Letters, 2018, 18, 1758-1763.	4.5	568
6	Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion. Advanced Materials, 2017, 29, 1602914.	11.1	523
7	Zn/V ₂ O ₅ Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. ACS Applied Materials & Interfaces, 2017, 9, 42717-42722.	4.0	401
8	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	7.3	374
9	LiNi _{0.5} Mn _{1.5} O ₄ Hollow Structures as Highâ€Performance Cathodes for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2012, 51, 239-241.	7.2	340
10	MoB/g ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 496-500.	7.2	308
11	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	11.1	289
12	Layerâ€byâ€Layer Na ₃ V ₂ (PO ₄) ₃ Embedded in Reduced Graphene Oxide as Superior Rate and Ultralongâ€Life Sodiumâ€Ion Battery Cathode. Advanced Energy Materials, 2016, 6, 1600389.	10.2	282
13	Low-Crystalline Bimetallic Metal–Organic Framework Electrocatalysts with Rich Active Sites for Oxygen Evolution. ACS Energy Letters, 2019, 4, 285-292.	8.8	255
14	Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. Journal of Materials Chemistry, 2012, 22, 7851.	6.7	253
15	α-MoO ₃ Nanobelts: A High Performance Cathode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 21868-21872.	1.5	248
16	Facile preparation of ZnMn ₂ O ₄ hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 827-829.	6.7	236
17	Bismuth Oxides with Enhanced Bismuth–Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2020, 10, 743-750.	5.5	234
18	Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy, 2018, 48, 617-629.	8.2	227

#	Article	IF	CITATIONS
19	Monodisperse and homogeneous SiO /C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Materials, 2018, 13, 112-118.	9.5	222
20	Tailoring the Void Size of Iron Oxide@Carbon Yolk–Shell Structure for Optimized Lithium Storage. Advanced Functional Materials, 2014, 24, 4337-4342.	7.8	212
21	Ultrafine Nickelâ€Nanoparticleâ€Enabled SiO ₂ Hierarchical Hollow Spheres for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2018, 28, 1704561.	7.8	193
22	Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries. Chemical Communications, 2013, 49, 8695.	2.2	192
23	Bottomâ€Up Confined Synthesis of Nanorodâ€inâ€Nanotube Structured Sb@N for Durable Lithium and Sodium Storage. Advanced Energy Materials, 2018, 8, 1703237.	10.2	192
24	CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy, 2019, 55, 82-92.	8.2	185
25	Metal–organic framework derived carbon-confined Ni ₂ P nanocrystals supported on graphene for an efficient oxygen evolution reaction. Chemical Communications, 2017, 53, 8372-8375.	2.2	184
26	Tailored Yolk–Shell Sn@C Nanoboxes for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2017, 27, 1606023.	7.8	173
27	Realizing Threeâ€Electron Redox Reactions in NASICONâ€6tructured Na ₃ MnTi(PO ₄) ₃ for Sodiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1803436.	10.2	171
28	Interconnected MoO ₂ Nanocrystals with Carbon Nanocoating as High-Capacity Anode Materials for Lithium-ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 4853-4857.	4.0	167
29	Yolk@Shell SiO /C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Materials, 2019, 19, 299-305.	9.5	167
30	Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy, 2019, 58, 492-498.	8.2	161
31	Heterostructured Bi ₂ S ₃ –Bi ₂ O ₃ Nanosheets with a Built-In Electric Field for Improved Sodium Storage. ACS Applied Materials & Interfaces, 2018, 10, 7201-7207.	4.0	153
32	Building better zinc-ion batteries: A materials perspective. EnergyChem, 2019, 1, 100022.	10.1	153
33	Singleâ€Atom Pt Loaded Zinc Vacancies ZnO–ZnS Induced Typeâ€V Electron Transport for Efficiency Photocatalytic H ₂ Evolution. Solar Rrl, 2021, 5, 2100536.	3.1	153
34	Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film. Journal of Electroanalytical Chemistry, 2009, 625, 82-87.	1.9	151
35	Novel K ₃ V ₂ (PO ₄) ₃ /C Bundled Nanowires as Superior Sodiumâ€Ion Battery Electrode with Ultrahigh Cycling Stability. Advanced Energy Materials, 2015, 5, 1500716.	10.2	150
36	Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment. Journal of Materials Chemistry, 2011, 21, 18359.	6.7	145

#	Article	IF	CITATIONS
37	Ultralong Sb ₂ Se ₃ Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 35219-35226.	4.0	139
38	Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy, 2016, 28, 224-231.	8.2	139
39	Zn ²⁺ Preâ€Intercalation Stabilizes the Tunnel Structure of MnO ₂ Nanowires and Enables Zincâ€Ion Hybrid Supercapacitor of Batteryâ€Level Energy Density. Small, 2020, 16, e2000091.	5.2	139
40	Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO ₂ Methanation. Nano Letters, 2021, 21, 7325-7331.	4.5	133
41	A designed nanoporous material for phosphate removal with high efficiency. Journal of Materials Chemistry, 2011, 21, 2489.	6.7	127
42	Synthesis of Magnesium Oxide Hierarchical Microspheres: A Dual-Functional Material for Water Remediation. ACS Applied Materials & Interfaces, 2015, 7, 21278-21286.	4.0	124
43	Ultrafine SiO _x /C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. Journal of Materials Chemistry A, 2018, 6, 14903-14909.	5.2	115
44	Mesoporous bioactive glasses for controlled drug release. Microporous and Mesoporous Materials, 2008, 109, 210-215.	2.2	113
45	Porous V ₂ O ₅ microspheres: a high-capacity cathode material for aqueous zinc–ion batteries. Chemical Communications, 2019, 55, 8486-8489.	2.2	112
46	Highly Selective Carbon Dioxide Electroreduction on Structure-Evolved Copper Perovskite Oxide toward Methane Production. ACS Catalysis, 2020, 10, 4640-4646.	5.5	112
47	A Facile Oneâ€Step Solvothermal Synthesis of SnO ₂ /Graphene Nanocomposite and Its Application as an Anode Material for Lithiumâ€Ion Batteries. ChemPhysChem, 2011, 12, 278-281.	1.0	111
48	Robust Photocatalytic H ₂ O ₂ Production over Inverse Opal g-C ₃ N ₄ with Carbon Vacancy under Visible Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 16467-16473.	3.2	110
49	Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. Journal of Power Sources, 2016, 304, 340-345.	4.0	109
50	Ligand Modulation of Active Sites to Promote Electrocatalytic Oxygen Evolution. Advanced Materials, 2022, 34, e2200270.	11.1	108
51	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	108
52	Unusual Formation of Singleâ€Crystal Manganese Sulfide Microboxes Coâ€mediated by the Cubic Crystal Structure and Shape. Angewandte Chemie - International Edition, 2012, 51, 7267-7270.	7.2	103
53	Polypyrroleâ€Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithiumâ€lon Batteries. Small, 2016, 12, 3732-3737.	5.2	102
54	Tailoring porous carbon spheres for supercapacitors. Nanoscale, 2018, 10, 21604-21616.	2.8	101

#	Article	IF	CITATIONS
55	Self-Organized Mesostructured Hollow Carbon Nanoparticles via a Surfactant-Free Sequential Heterogeneous Nucleation Pathway. Chemistry of Materials, 2015, 27, 6297-6304.	3.2	99
56	Mesoporous Li ₃ VO ₄ /C Submicronâ€Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for Highâ€Power Lithiumâ€ion Batteries. Advanced Science, 2015, 2, 1500284.	5.6	99
57	Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic–organic self-assembly and superior supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 24041-24048.	5.2	96
58	Green Synthesis of Hexagonal-Shaped WO ₃ ·0.33H ₂ O Nanodiscs Composed of Nanosheets. Crystal Growth and Design, 2008, 8, 3993-3998.	1.4	94
59	Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. ACS Applied Materials & Interfaces, 2015, 7, 18211-18217.	4.0	94
60	Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries. Nano Energy, 2020, 70, 104548.	8.2	92
61	Nanosheet-Based Bi ₂ Mo _{<i>x</i>} W _{1â^'<i>x</i>} O ₆ Solid Solutions with Adjustable Band Gaps and Enhanced Visible-Light-Driven Photocatalytic Activities. Journal of Physical Chemistry C, 2010, 114, 18812-18818.	1.5	83
62	Encapsulation of α-Fe ₂ O ₃ nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 3270-3275.	2.8	82
63	Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2015, 7, 26572-26578.	4.0	82
64	Acetylene Black Induced Heterogeneous Growth of Macroporous CoV ₂ O ₆ Nanosheet for High-Rate Pseudocapacitive Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 7139-7146.	4.0	81
65	Yolk–shell Nb ₂ O ₅ microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors. Journal of Materials Chemistry A, 2019, 7, 11234-11240.	5.2	80
66	Porous and Low-Crystalline Manganese Silicate Hollow Spheres Wired by Graphene Oxide for High-Performance Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2017, 9, 24584-24590.	4.0	79
67	Monodisperse Carbon Sphere-Constructed Pomegranate-Like Structures for High-Volumetric-Capacitance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 4011-4016.	4.0	79
68	Heterostructure Design in Bimetallic Phthalocyanine Boosts Oxygen Reduction Reaction Activity and Durability. Advanced Functional Materials, 2020, 30, 2005000.	7.8	78
69	Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87, 106153.	8.2	76
70	Graphene Oxide Templated Growth and Superior Lithium Storage Performance of Novel Hierarchical Co ₂ V ₂ O ₇ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 2812-2818.	4.0	74
71	Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement. Advanced Energy Materials, 2017, 7, 1601582.	10.2	73
72	Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni–Zn batteries. Journal of Materials Chemistry A, 2018, 6, 19488-19494.	5.2	73

#	Article	IF	CITATIONS
73	Highâ€Energy Aqueous Ammoniumâ€Ion Hybrid Supercapacitors. Advanced Materials, 2022, 34, e2107992.	11.1	73
74	Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19427-19432.	5.2	72
75	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	1.7	72
76	A simple approach to prepare monodisperse mesoporous silica nanospheres with adjustable sizes. Journal of Colloid and Interface Science, 2012, 376, 67-75.	5.0	71
77	MoB/g ₃ N ₄ Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. Angewandte Chemie, 2018, 130, 505-509.	1.6	71
78	New Understanding and Simple Approach to Synthesize Highly Hydrothermally Stable and Ordered Mesoporous Materials. Chemistry of Materials, 2009, 21, 5413-5425.	3.2	69
79	Self-modification of g-C ₃ N ₄ with its quantum dots for enhanced photocatalytic activity. Catalysis Science and Technology, 2018, 8, 2617-2623.	2.1	69
80	Copper silicate nanotubes anchored on reduced graphene oxide for long-life lithium-ion battery. Energy Storage Materials, 2017, 7, 152-156.	9.5	67
81	Hierarchical macro-mesoporous g-C ₃ N ₄ with an inverse opal structure and vacancies for high-efficiency solar energy conversion and environmental remediation. Nanoscale, 2019, 11, 20638-20647.	2.8	67
82	Macroscopic synthesis of ultrafine N–doped carbon nanofibers for superior capacitive energy storage. Science Bulletin, 2019, 64, 1617-1624.	4.3	66
83	Carbon Vacancy Mediated Incorporation of Ti ₃ C ₂ Quantum Dots in a 3D Inverse Opal g-C ₃ N ₄ Schottky Junction Catalyst for Photocatalytic H ₂ O ₂ Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 481-488.	3.2	66
84	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	5.3	65
85	Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Science Bulletin, 2019, 64, 617-624.	4.3	65
86	Enveloping SiO _x in N-doped carbon for durable lithium storage <i>via</i> an eco-friendly solvent-free approach. Journal of Materials Chemistry A, 2020, 8, 13285-13291.	5.2	65
87	Mo _{<i>x</i>} W _{1â[~]<i>x</i>} O ₃ ·0.33H ₂ O Solid Solutions with Tunable Band Gaps. Journal of Physical Chemistry C, 2010, 114, 20947-20954.	1.5	64
88	Methyl-functionalized MoS ₂ nanosheets with reduced lattice breathing for enhanced pseudocapacitive sodium storage. Physical Chemistry Chemical Physics, 2017, 19, 13696-13702.	1.3	62
89	Eutectic Electrolytes in Advanced Metal-Ion Batteries. ACS Energy Letters, 2022, 7, 247-260.	8.8	61
90	Low-cost and large-scale synthesis of functional porous materials for phosphate removal with high performance. Nanoscale, 2013, 5, 6173.	2.8	60

#	Article	IF	CITATIONS
91	New-type K0.7Fe0.5Mn0.5O2 cathode with an expanded and stabilized interlayer structure for high-capacity sodium-ion batteries. Nano Energy, 2017, 35, 71-78.	8.2	60
92	Designed synthesis of LiMn ₂ O ₄ microspheres with adjustable hollow structures for lithium-ion battery applications. Journal of Materials Chemistry A, 2013, 1, 837-842.	5.2	56
93	Design of Multi‣helled Hollow Cr ₂ O ₃ Spheres for Metabolic Fingerprinting. Angewandte Chemie - International Edition, 2021, 60, 12504-12512.	7.2	53
94	Surface Oxidation Layer-Mediated Conformal Carbon Coating on Si Nanoparticles for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2021, 13, 3991-3998.	4.0	51
95	Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage. Small, 2022, 18, e2105303.	5.2	51
96	Cobalt-doping in hierarchical Ni ₃ S ₂ nanorod arrays enables high areal capacitance. Journal of Materials Chemistry A, 2020, 8, 13114-13120.	5.2	49
97	Polydopamine sacrificial layer mediated SiO _x /C@C yolk@shell structure for durable lithium storage. Materials Chemistry Frontiers, 2020, 4, 1656-1663.	3.2	49
98	Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous and Mesoporous Materials, 2008, 109, 248-257.	2.2	48
99	Organosilica Multilamellar Vesicles with Tunable Number of Layers and Sponge-Like Walls via One Surfactant Templating. Chemistry of Materials, 2008, 20, 6238-6243.	3.2	48
100	Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. Nano Research, 2017, 10, 4351-4359.	5.8	47
101	Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Advanced Functional Materials, 2016, 26, 5408-5418.	7.8	46
102	Mass Production of Monodisperse Carbon Microspheres with Sizeâ€Dependent Supercapacitor Performance via Aqueous Selfâ€Catalyzed Polymerization. ChemPlusChem, 2017, 82, 872-878.	1.3	46
103	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Research, 2016, 9, 3725-3734.	5.8	45
104	Boosting the Deep Discharging/Charging Lithium Storage Performances of Li ₃ VO ₄ through Double-Carbon Decoration. ACS Applied Materials & Interfaces, 2018, 10, 23938-23944.	4.0	45
105	0D/3D coupling of g-C3N4 QDs/hierarchical macro-mesoporous CuO-SiO2 for high-efficiency norfloxacin removal in photo-Fenton-like processes. Journal of Hazardous Materials, 2021, 419, 126359.	6.5	45
106	Laser Engineered Graphene Paper for Mass Spectrometry Imaging. Scientific Reports, 2013, 3, 1415.	1.6	44
107	A systematic study on the synthesis of α-Fe ₂ O ₃ multi-shelled hollow spheres. RSC Advances, 2015, 5, 10304-10309.	1.7	41
108	Confining Ultrafine MoO ₂ in a Carbon Matrix Enables Hybrid Li Ion and Li Metal Storage. ACS Applied Materials & Interfaces, 2020, 12, 40648-40654.	4.0	40

#	Article	IF	CITATIONS
109	FeN _x and γ-Fe ₂ O ₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium. Journal of Materials Chemistry A, 2020, 8, 6076-6082.	5.2	40
110	Recent advances of doped graphite carbon nitride for photocatalytic reduction of CO2: a review. Research on Chemical Intermediates, 2020, 46, 5133-5164.	1.3	39
111	Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. Journal of Materials Chemistry A, 2020, 8, 12418-12423.	5.2	38
112	Ni/Fe based bimetallic coordination complexes with rich active sites for efficient oxygen evolution reaction. Chemical Engineering Journal, 2021, 405, 126959.	6.6	38
113	Highly crystallized Fe2O3nanocrystals on graphene: a lithium ion battery anode material with enhanced cycling. RSC Advances, 2014, 4, 495-499.	1.7	37
114	Spray-pyrolysis-assisted synthesis of yolk@shell anatase with rich oxygen vacancies for efficient sodium storage. Journal of Materials Chemistry A, 2019, 7, 6740-6746.	5.2	37
115	Facet-Selective Deposition of FeO _{<i>x</i>} on α-MoO ₃ Nanobelts for Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 39425-39431.	4.0	36
116	Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn–air batteries. Chemical Communications, 2019, 55, 334-337.	2.2	35
117	Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2020, 56, 4488-4491.	2.2	35
118	Phosphorus-doped inverse opal g-C ₃ N ₄ for efficient and selective CO generation from photocatalytic reduction of CO ₂ . Catalysis Science and Technology, 2020, 10, 3694-3700.	2.1	34
119	A combo-pore approach for the programmable extraction of peptides/proteins. Nanoscale, 2014, 6, 5121-5125.	2.8	31
120	Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors. Chinese Chemical Letters, 2020, 31, 1620-1624.	4.8	31
121	Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. Carbon, 2006, 44, 1601-1604.	5.4	29
122	Advanced Li-Se S battery system: Electrodes and electrolytes. Journal of Materials Science and Technology, 2020, 55, 1-15.	5.6	28
123	In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution. Journal of Energy Chemistry, 2021, 55, 10-16.	7.1	28
124	Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal–Oxygen Covalency Enables Efficient Oxygen Evolution. Energy and Environmental Materials, 2022, 5, 231-237.	7.3	28
125	Photo-Fenton-like degradation of antibiotics by inverse opal WO3 co-catalytic Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes: A comparative study. Chemosphere, 2022, 288, 132627.	4.2	27
126	Efficient removal of antibiotic-resistant bacteria and intracellular antibiotic resistance genes by heterogeneous activation of peroxymonosulfate on hierarchical macro-mesoporous Co3O4-SiO2 with enhanced photogenerated charges. Journal of Hazardous Materials, 2022, 430, 127414.	6.5	27

#	Article	IF	CITATIONS
127	Synthesis of urchin-like CdWO4 microspheres via a facile template free hydrothermal method. CrystEngComm, 2010, 12, 3019.	1.3	26
128	Facile Synthesis of Bi ₂ S ₃ @SiO ₂ Core-Shell Microwires as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A6110-A6115.	1.3	26
129	Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production. Research on Chemical Intermediates, 2019, 45, 5907-5917.	1.3	26
130	Graphene oxide-decorated Fe2(MoO4)3 microflowers as a promising anode for lithium and sodium storage. Nano Research, 2018, 11, 1285-1293.	5.8	25
131	Solving Complex Concentric Circular Mesostructures by Using Electron Tomography. Angewandte Chemie - International Edition, 2008, 47, 6670-6673.	7.2	24
132	Electrochemical Properties of Ordered Mesoporous Carbon Film Adsorbed onto a Selfâ€Assembled Alkanethiol Monolayer on Gold Electrode. Electroanalysis, 2009, 21, 184-189.	1.5	24
133	Hierarchical Cu ₄ V _{2.15} O _{9.38} micro-/nanostructures: a lithium intercalating electrode material. Nanoscale, 2011, 3, 999-1003.	2.8	24
134	A systematic study of long-range ordered 3D-SBA-15 materials by electron tomography. New Journal of Chemistry, 2011, 35, 2456.	1.4	24
135	Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Microporous and Mesoporous Materials, 2011, 143, 157-165.	2.2	23
136	Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. Journal of Materials Chemistry A, 2014, 2, 4144-4149.	5.2	22
137	Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors. Chinese Chemical Letters, 2021, 32, 184-189.	4.8	22
138	Kinetically Controlled Assembly of Nitrogenâ€Doped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967.	1.7	21
139	Activating Inert Sites in Cobalt Silicate Hydroxides for Oxygen Evolution through Atomically Doping. Energy and Environmental Materials, 2022, 5, 655-661.	7.3	21
140	Heterogeneous Contraction-Mediated Asymmetric Carbon Colloids. , 2019, 1, 290-296.		20
141	Hollow SiO _{<i>x</i>} /C Microspheres with Semigraphitic Carbon Coating as the "Lithium Host―for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 3905-3912.	2.5	20
142	Ammonium Ion and Structural Water <scp>Coâ€Assisted</scp> Zn ²⁺ Intercalation/ <scp>Deâ€Intercalation</scp> in <scp>NH₄V₄O₁₀</scp> â^™0. <scp>28H₂O</scp> <â€ <br Chinese Journal of Chemistry, 2021, 39, 1885-1890.	/sup>.	19
143	Self-assembly of monodispersed silica nano-spheres with a closed-pore mesostructure. Journal of Materials Chemistry, 2012, 22, 11523.	6.7	18
144	Microporeâ€Rich Yolkâ€Shell Nâ€doped Carbon Spheres: An Ideal Electrode Material for Highâ€Energy Capacitive Energy Storage. ChemSusChem, 2021, 14, 1756-1762.	3.6	18

#	Article	IF	CITATIONS
145	Confinement of Chemisorbed Phosphates in a Controlled Nanospace with Threeâ€Dimensional Mesostructures. Chemistry - A European Journal, 2013, 19, 5578-5585.	1.7	16
146	gâ€C ₃ N ₄ Inverse Opals with Isotype Heterostructure for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Chemistry - an Asian Journal, 2018, 13, 3261-3267.	1.7	16
147	Eutectic Electrolyte with Unique Solvation Structure for Highâ€Performance Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	16
148	Interconnected LiCuVO ₄ networks with in situ Cu generation as high-performance lithium-ion battery anode. Physical Chemistry Chemical Physics, 2017, 19, 13341-13347.	1.3	15
149	Hierarchical Bimetallic Selenide Nanosheetâ€Constructed Nanotubes for Efficient Electrocatalytic Water Oxidation. ChemElectroChem, 2019, 6, 331-335.	1.7	15
150	Extensive Inspection of an Unconventional Mesoporous Silica Material at All Length-Scales. Chemistry of Materials, 2011, 23, 229-238.	3.2	14
151	Highly efficient photocatalytic H2O2 production on core–shell CdS@CdIn2S4 heterojunction in non-sacrificial system. Research on Chemical Intermediates, 2021, 47, 3379-3393.	1.3	13
152	Synthesis of highly ordered and hydrothermally stable mesoporous materials using sodium silicate as a precursor. Materials Letters, 2010, 64, 1543-1545.	1.3	12
153	Three‣ayer Structured SnO ₂ @C@TiO ₂ Hollow Spheres for Highâ€₽erformance Sodium Storage. Energy and Environmental Materials, 2021, 4, 428-433.	7.3	12
154	<scp>ZIF</scp> â€Mediated Anchoring of Co species on Nâ€doped CarbonÂNanorods as an Efficient Cathode Catalyst for Znâ€Air Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	12
155	A silanol protection mechanism: Understanding the decomposition behavior of surfactants in mesostructured solids. Journal of Materials Research, 2011, 26, 804-814.	1.2	11
156	Encapsulation of Na ₄ MnV(PO ₄) ₃ in robust dual-carbon framework rendering high-energy, durable sodium storage. JPhys Energy, 2020, 2, 025003.	2.3	11
157	Co 0.5 Ni 0.5 MoO 4 Doubleâ€Shelled Hollow Spheres with Enhanced Electrochemical Performance for Supercapacitors and Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1801160.	1.8	10
158	Solvent-Free Encapsulation of Ultrafine SnO ₂ Nanoparticles in N-Doped Carbon for High-Capacity and Durable Lithium Storage. ACS Applied Energy Materials, 2021, 4, 6277-6283.	2.5	10
159	Carbon Nitride Quantum Dots Modified TiO2 Inverse Opal Photonic Crystal for Solving Indoor VOCs Pollution. Catalysts, 2021, 11, 464.	1.6	9
160	Anchoring ultra-small Mo ₂ C nanocrystals on honeycomb-structured N-doped carbon spheres for efficient hydrogen evolution. Chemical Communications, 2022, 58, 5269-5272.	2.2	9
161	S-Scheme BiOCl/MoSe2 Heterostructure with Enhanced Photocatalytic Activity for Dyes and Antibiotics Degradation under Sunlight Irradiation. Sensors, 2022, 22, 3344.	2.1	9
162	Synthesis of Enantiomorphic Excessive Helical Mesoporous Silicas Using Chiral Molecular Dopants. Chemistry Letters, 2008, 37, 1160-1161.	0.7	8

#	Article	IF	CITATIONS
163	On the Equilibrium of Helical Nanostructures with Ordered Mesopores. Journal of Physical Chemistry B, 2009, 113, 16178-16183.	1.2	7
164	αâ€FeOOHâ^'MoO ₃ Nanorod for Effective Photoâ€Fenton Degradation of Dyes and Antibiotics at a Wide Range of pH. Chemistry - an Asian Journal, 2020, 15, 2749-2753.	1.7	7
165	Constructing Three-Dimensional Macroporous TiO ₂ Microspheres with Enhanced Pseudocapacitive Lithium Storage under Deep Discharging/Charging Conditions. ACS Applied Materials & Interfaces, 2021, 13, 16528-16535.	4.0	7
166	Solid Solution of Bi and Sb for Robust Lithium Storage Enabled by Consecutive Alloying Reaction. Small, 2021, 17, e2102915.	5.2	7
167	Realizing Sub-5 nm Red Phosphorus Dispersion in a SiO _{<i>x</i>} /C Matrix for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2022, 14, 26775-26781.	4.0	7
168	Controllable Synthesis of Inverse Opal TiO _{2â€<i>x</i>} Photonic Crystals and Their Photoelectric Properties. Chemistry - an Asian Journal, 2019, 14, 322-327.	1.7	6
169	Nitrogen-Doped Mesoporous Carbon Microspheres by Spray Drying-Vapor Deposition for High-Performance Supercapacitor. Frontiers in Chemistry, 2020, 8, 592904.	1.8	6
170	Binder-Free TiO2 Monolith-Packed Pipette Tips for the Enrichment of Phosphorylated Peptides. Australian Journal of Chemistry, 2016, 69, 1396.	0.5	5
171	Design of Multi‧helled Hollow Cr 2 O 3 Spheres for Metabolic Fingerprinting. Angewandte Chemie, 2021, 133, 12612-12620.	1.6	5
172	Hierarchically fractal Co with highly exposed active facets and directed electron-transfer effect. Chemical Communications, 2022, 58, 6882-6885.	2.2	5
173	Molybdenum oxide nanorods decorated with molybdenum phosphide quantum dots for efficient photocatalytic degradation of rhodamine B and norfloxacin. Research on Chemical Intermediates, 2022, 48, 2887-2901.	1.3	4
174	Hetero-structured Fe–Cr–O hollow multishelled spheres for stable sodium storage. Materials Chemistry Frontiers, 2022, 6, 1903-1911.	3.2	4
175	Polyol Solvation Effect on Tuning the Universal Growth of Binary Metal Oxide Nanodots@Graphene Oxide Heterostructures for Electrochemical Applications. Chemistry - A European Journal, 2019, 25, 14604-14612.	1.7	2
176	Hollow Nanospheres: Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5579-5579.	7.8	0