Marcelino Barboza-Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8403963/publications.pdf

Version: 2024-02-01

		331670	361022
142	1,836	21	35
papers	citations	h-index	g-index
1.40	1.40	1.40	1005
143	143	143	1985
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photoluminescence and Raman Scattering in Ag-doped ZnO Nanoparticles. Journal of Applied Physics, 2011, 109, .	2.5	254
2	Highly reproducible synthesis of hollow gold nanospheres with near infrared surface plasmon absorption using PVP as stabilizing agent. Journal of Materials Chemistry, 2011, 21, 2344-2350.	6.7	85
3	SERS spectroscopy and SERS imaging of Shewanella oneidensis using silver nanoparticles and nanowires. Chemical Communications, 2011, 47, 4129.	4.1	79
4	Monoclinic ZrO2 as a broad spectral response thermoluminescence UV dosemeter. Radiation Measurements, 2003, 37, 187-190.	1.4	51
5	Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation. Optical Materials, 2004, 25, 285-293.	3.6	49
6	Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4:Eu2+, Dy3+ phosphor. Journal of Luminescence, 2008, 128, 173-184.	3.1	41
7	Thermoluminescence properties of new ZnO nanophosphors exposed to beta irradiation. Optical Materials, 2005, 27, 1235-1239.	3.6	40
8	Thermoluminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to X- and β-ray irradiation. Optical Materials, 2004, 27, 293-299.	3.6	36
9	Thermoluminescence properties of ZnO and ZnO:Yb nanophosphors. Applied Physics Letters, 2006, 89, 183118.	3.3	36
10	Thermoluminescence and infrared stimulated luminescence in long persistent monoclinic SrAl2O4:Eu2+,Dy3+ and SrAl2O4:Eu2+,Nd3+ phosphors. Optical Materials, 2019, 92, 46-52.	3.6	33
11	Temperature dependence of persistent luminescence in β-irradiated SrAl2O4:Eu2+, Dy3+ phosphor. Journal of Luminescence, 2009, 129, 679-685.	3.1	30
12	Hollow Au–Ag bimetallic nanoparticles with high photothermal stability. RSC Advances, 2016, 6, 41304-41312.	3.6	29
13	Gamma radiation effects on commercial Mexican bread making wheat flour. Nuclear Instruments & Methods in Physics Research B, 2006, 245, 455-458.	1.4	27
14	The behavior of thermally and optically stimulated luminescence of long persistent phosphor after blue light illumination. Radiation Measurements, 2008, 43, 241-244.	1.4	25
15	Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-1668.	0.9	24
16	Dose enhancing behavior of hydrothermally grown Eu-doped SnO2 nanoparticles. Journal of Applied Physics, 2013, 113, .	2.5	24
17	Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. Science of the Total Environment, 2020, 713, 136481.	8.0	24
18	Optical Properties of Complex Anion Vacancy Centres and Photo-Excited Electronic Processes in Anion Defective Alpha-Al2O3. Radiation Protection Dosimetry, 1996, 65, 235-238.	0.8	23

#	Article	IF	CITATIONS
19	Thermoluminescence and optically stimulated luminescence properties of nanocrystalline Er3+and Yb3+doped Y3Al5O12exposed to l²-rays. Journal Physics D: Applied Physics, 2005, 38, 3854-3859.	2.8	23
20	Beta radiation induced thermoluminescence in pure ZrO2 prepared by sol–gel. Journal of Non-Crystalline Solids, 2006, 352, 2543-2547.	3.1	23
21	The role of F centres in the thermoluminescence of low-energy UV- and X-irradiated KCl:Eu2+. Journal of Physics Condensed Matter, 1994, 6, 10397-10405.	1.8	22
22	Thermoluminescence characterization of nanocrystalline and single Y3Al5O12 crystal exposed to β-irradiation for dosimetric applications. Optical Materials, 2005, 27, 1240-1244.	3.6	22
23	Thermoluminescence properties of undoped and Tb3+ and Ce3+ doped YAG nanophosphor under UV-, X- and β-ray irradiation. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 357-364.	1.4	22
24	Study of Interlayer Spacing Collapse During Polymer/Clay Nanocomposite Melt Intercalation. Journal of Nanoscience and Nanotechnology, 2008, 8, 1707-1713.	0.9	21
25	Nonthermoluminescent dosimetry based on the afterglow response of europiumâ€doped alkali halides. Applied Physics Letters, 1993, 63, 3017-3019.	3.3	20
26	Dosimetric properties of KCl:Eu2+ under α, β, γ, x ray, and ultraviolet irradiation. Applied Physics Letters, 1996, 68, 3398-3400.	3.3	20
27	Actinometric thermoluminescence response of KCl1â^'xBrx:Eu2+ mixed crystals. Applied Physics Letters, 1996, 69, 1388-1390.	3.3	20
28	Photoluminescence, afterglow and thermoluminescence in irradiated with blue and UV light. Radiation Measurements, 2007, 42, 668-671.	1.4	20
29	Luminescence of CsPbCl3-like Quantum Dots in CsCl : Pb Crystals. Physica Status Solidi (B): Basic Research, 2001, 225, 247-255.	1.5	19
30	A new chemical bath deposition method for fabricating ZnS, Zn(OH)2, and ZnO thin films, and the optical and structural characterization of these materials. Applied Physics A: Materials Science and Processing, 2004, 79, 1941-1945.	2.3	19
31	Î ³ radiation thermoluminescence performance of HFCVD diamond films. Nuclear Instruments & Methods in Physics Research B, 2006, 248, 103-108.	1.4	18
32	Hyperfine spectrum of207Bi by absorption spectroscopy: Isotope shift systematics in heavy elements. Zeitschrift Für Physik A, 1985, 321, 85-89.	1.4	17
33	Thermally and optically stimulated luminescence in long persistent orthorhombic strontium aluminates doped with Eu, Dy and Eu, Nd. Optical Materials, 2017, 67, 91-97.	3.6	17
34	Thermally and optically stimulated luminescence correlated processes in X-ray irradiated KCl:Eu2+. Radiation Measurements, 2001, 33, 797-800.	1.4	16
35	RES structure of Bi ³⁺ centres in KCI: Bi, S and CaO:Bi crystals. Physica Status Solidi (B): Basic Research, 1996, 194, 619-631.	1.5	15
36	Exciton 4.29 and 3.65 eV luminescence in CsI:Tl and CsI:Pb. Journal of Physics Condensed Matter, 1997, 9, 7249-7256.	1.8	15

#	Article	IF	CITATIONS
37	Thermoluminescence, Optical Stimulated Luminescence and Defect Creation in Europium Doped KCl and KBr Crystals. Physica Status Solidi (B): Basic Research, 2000, 220, 671-676.	1.5	15
38	Thermoluminescence properties of aluminum oxide thin films obtained by pulsed laser deposition. Radiation Measurements, 2002, 35, 355-359.	1.4	15
39	Optical absorption and thermoluminescence in single NaCl:Cu crystals exposed to 60Co and UV light. Radiation Protection Dosimetry, 2006, 119, 102-105.	0.8	14
40	Persistent luminescence, TL and OSL characterization of beta irradiated SrAl2O4:Eu2+, Dy3+ combustion synthesized phosphor. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 99-102.	1.4	14
41	Coexistence of the impurity and perturbed exciton levels in the relaxed excited state of CsCl:Pb crystal. Journal of Physics Condensed Matter, 1998, 10, 5449-5461.	1.8	13
42	KCl: Eu2+ as a solar UV-C radiation dosimeter. Optically stimulated luminescence and thermoluminescence analyses. Journal of Rare Earths, 2009, 27, 579-583.	4.8	13
43	Luminescence and Structure of ZnO Grown by Physical Vapor Deposition. Advances in Materials Science and Engineering, 2012, 2012, 1-5.	1.8	13
44	Afterglow, thermoluminescence and optically stimulated luminescence characterization of micro-, nano- and ultrananocrystalline diamond films grown on silicon by HFCVD. Diamond and Related Materials, 2018, 85, 117-124.	3.9	13
45	Selfâ€irradiation in potassium halide thermoluminescent crystals. Applied Physics Letters, 1994, 64, 1789-1790.	3.3	12
46	Room-temperature effects of UV radiation in KBr: crystals. Journal of Physics Condensed Matter, 1996, 8, 4983-4992.	1.8	12
47	Optical characterisation of rare earths in natural fluorapatite. Journal of Alloys and Compounds, 2001, 323-324, 851-854.	5.5	12
48	Thermoluminescence assessment of 0.5, 1.0 and 4.0 µm thick HFCVD undoped diamond films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2103-2108.	1.8	12
49	Ultraviolet dosimetric properties of αâ€Al2O3crystals. Applied Physics Letters, 1993, 63, 894-895.	3.3	11
50	Dosimetric characteristics of ultraviolet and xâ€rayâ€irradiated KBr:Eu2+ thermoluminescence crystals. Applied Physics Letters, 1996, 69, 1068-1070.	3.3	11
51	Thermoluminescence characterization of CVD diamond film exposed to UV and beta radiation. Physica Status Solidi A, 2003, 199, 125-130.	1.7	11
52	Thermoluminescence properties of undoped and nitrogen-doped CVD diamond exposed to gamma radiation. Radiation Measurements, 2008, 43, 379-382.	1.4	11
53	Persistent luminescence and thermoluminescence of UV/VIS -irradiated SrAl2O4: Eu2+, Dy3+ phosphor. Radiation Measurements, 2011, 46, 1417-1420.	1.4	11
54	β-ray irradiation thermoluminescence and dosimetric characterization of KCl1â^xBrx:Eu2+ mixed crystals. Radiation Measurements, 1998, 29, 487-491.	1.4	10

#	Article	IF	CITATIONS
55	Thermoluminescence characterization of a MWCVD diamond film exposed to β-rays and UV radiation. Physica Status Solidi A, 2005, 202, 2206-2211.	1.7	10
56	Ionoluminescence of diamond, synthetic diamond and simulants. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580, 400-403.	1.6	10
57	Optically stimulated luminescence dosimetry on CVD diamond films. Physica Status Solidi A, 2004, 201, 2548-2552.	1.7	9
58	Optically stimulated luminescence properties of nanocrystalline Y3Al5O12 phosphor exposed to \hat{l}^2 radiation. Optical Materials, 2005, 27, 1245-1249.	3.6	9
59	TL, OSL, Raman spectroscopy and SEM characterization of boron doped diamond films. Physica Status Solidi A, 2005, 202, 2154-2159.	1.7	9
60	Fading and selfâ€irradiation of potassium halide thermoluminescence dosimeters. Applied Physics Letters, 1995, 66, 3126-3127.	3.3	8
61	Stokes shift of the F center electronic transitions in mixed ionic crystals. Radiation Effects and Defects in Solids, 1996, 138, 153-158.	1.2	8
62	Dose rate effects on the thermoluminescence properties of MWCVD diamond films. Radiation Effects and Defects in Solids, 2007, 162, 587-595.	1.2	8
63	Dose effects on the long persistent luminescence properties of beta irradiated SrAl2O4:Eu2+, Dy3+ phosphor. Radiation Measurements, 2010, 45, 311-313.	1.4	8
64	Carboxylated nanodiamond and reâ€oxygenation process of gamma irradiated red blood cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2437-2444.	1.8	8
65	Photoluminescence enhancement from GaN by beryllium doping. Optical Materials, 2016, 60, 398-403.	3.6	8
66	Thermally stimulated luminescence and persistent luminescence of \hat{l}^2 -irradiated YAG:Pr3+ nanophosphors produced by combustion synthesis. Radiation Measurements, 2016, 94, 35-40.	1.4	8
67	A simple calibration method for potassium halide thermoluminescence dosimeters. Applied Physics Letters, 1995, 67, 3266-3268.	3.3	7
68	UV induced afterglow of KCl:Eu,KBr:Eu and NaCl:Eu at low temperature. Radiation Measurements, 2001, 33, 813-817.	1.4	7
69	Application of a Thermoluminescence Method for Detection of Irradiated Spices. Radiation Protection Dosimetry, 2002, 101, 137-140.	0.8	7
70	TL, OSL, and phototransferred TL in beta-irradiated anion-defective Al2O3. Radiation Measurements, 2004, 38, 685-688.	1.4	7
71	Thermal annealing effects on the TL response of beta-irradiated HPHT Ib type synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3041-3046.	1.8	7
72	Afterglow and thermally stimulated luminescence induced by UV radiation in CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3047-3052.	1.8	7

#	Article	IF	CITATIONS
73	Identification of refractory zirconia from catalytic converters in dust: An emerging pollutant in urban environments. Science of the Total Environment, 2021, 760, 143384.	8.0	7
74	INFLUENCE OF COMPOSITION IN THE FORMATION OF Eu 2+ AGGREGATED PHASES IN KCl 1â ^{~2} x Br x :Eu 2+ MIXED CRYSTALS. Journal of Physics and Chemistry of Solids, 1997, 58, 1027-1031.	4.0	6
75	Solar ultraviolet-B detectors using Eu2+ doped alkali halide crystals. Journal of Alloys and Compounds, 2001, 323-324, 847-850.	5.5	6
76	Comparative investigations of TL and OSL in KCI:Eu ²⁺ crystals irradiated with UV and X-rays. Radiation Effects and Defects in Solids, 2001, 154, 319-324.	1.2	6
77	APPLICATION OF CVD DIAMOND FILMS FOR UV THERMOLUMINESCENCE DOSIMETER. International Journal of Modern Physics B, 2002, 16, 1003-1007.	2.0	6
78	OSL and TL dosimeter characterization of boron doped CVD diamond films. Optical Materials, 2005, 27, 1231-1234.	3.6	6
79	Ionoluminescence of trivalent rare-earth-doped strontium barium niobate. Journal of Luminescence, 2008, 128, 735-737.	3.1	6
80	Synthesis and characterization of highly luminescent beryllium nitride. Materials Letters, 2014, 132, 179-181.	2.6	6
81	Hydrothermally Grown Ultra-Fine SnO2 and SnO2:Ag Nanoparticles and Their Optical Characteristics. Science of Advanced Materials, 2012, 4, 591-596.	0.7	6
82	Outdoor evaluation of the thermoluminescent properties of α-Al2O3 crystals. Applied Physics Letters, 1997, 70, 1674-1675.	3.3	5
83	Chemically vapor deposited diamond film ultraviolet thermoluminescence dosimeter. Materials Letters, 2002, 56, 80-84.	2.6	5
84	On the use of MWCVD diamond as thermoluminescent gamma dosimeter. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 592-598.	1.4	5
85	Dose rate effects on the thermoluminescence kinetics properties of MWCVD diamond films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3053-3058.	1.8	5
86	Thermoluminescence and Optically Stimulated Luminescence Properties of <i>β</i> -Irradiated TiO ₂ :Yb Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 1851-1857.	0.9	5
87	Afterglow and thermoluminescence properties in <scp>HPHT</scp> diamond crystals under beta irradiation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2088-2094.	1.8	5
88	Optical properties and functional groups characterization of commercial HPHT micro-diamond samples. Optical Materials, 2022, 131, 112592.	3.6	5
89	A laboratory project to obtain the low-temperature lattice constants of ionic crystals. European Journal of Physics, 1992, 13, 189-192.	0.6	4
90	Luminescent quantum efficiency of ions in mixed crystals. Journal of Physics Condensed Matter, 1998, 10, 4113-4118.	1.8	4

#	Article	IF	CITATIONS
91	Thermoluminescence in CVD Diamond Films: Application to Actinometric Dosimetry. Radiation Protection Dosimetry, 2002, 100, 443-446.	0.8	4
92	Optical Properties of Sol–Gel-Prepared Iron-Doped SiO2*. Inorganic Materials, 2002, 38, 45-47.	0.8	4
93	Dose rate effect on the yield of radiation induced response with thermal fading. Radiation Measurements, 2005, 39, 329-335.	1.4	4
94	Afterglow, TL and IRSL in beta-irradiated HPHT type Ib synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3167-3172.	1.8	4
95	All optical read-out radiation dosimeter using CVD synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3173-3178.	1.8	4
96	Dose rate effects on the thermoluminescence properties of HFCVD diamonds. Diamond and Related Materials, 2008, 17, 1283-1287.	3.9	4
97	Preliminary results on the identification of ultraviolet and beta radiation exposure in KCl:Eu2+ single crystals by thermoluminescence. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2870-2873.	1.4	4
98	Dose rate effects on the performance of MWCVD diamond films as TL gamma radiation dosimeter. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1944-1948.	1.8	4
99	AC, TL, and IRSL dosimetric properties in Xâ€ray irradiated HPHT diamond crystals. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2359-2362.	1.8	4
100	Measurement of scientific research performance at the Universidad De Sonora, México. , 2015, ,		4
101	Improved Method of Study on the Photothermal Effect of Plasmonic Nanoparticles by Dynamic IR Thermography. Plasmonics, 2019, 14, 935-944.	3.4	4
102	Nanoscale dose deposition in cell structures under X-ray irradiation treatment assisted with nanoparticles: An analytical approach to the relative biological effectiveness. Applied Radiation and Isotopes, 2018, 138, 50-55.	1.5	4
103	HFS and isotope shift in the atomic spectrum of205Pb. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1987, 7, 165-170.	1.0	3
104	Influence of the aggregation-precipitation state on the thermoluminescence of non-irradiated KCl _(1-x) Br _x :Eu ²⁺ mixed crystals. Radiation Effects and Defects in Solids, 1991, 119-121, 75-80.	1.2	3
105	Ultraviolet Thermoluminescent Dosimetry using High Temperature Peaks in KCl:Eu2+ Crystals. Radiation Protection Dosimetry, 2002, 100, 425-427.	0.8	3
106	Thermoluminescence Properties of KCl1-XKBrX:Pb2+ Mixed Crystals. Radiation Protection Dosimetry, 2002, 100, 455-457.	0.8	3
107	Photoluminescence and thermoluminescence of YAG:Ce3+,Tb3+nanocrystalline under UV-, X- and $\hat{l}^2\text{-irradiation.}$, 2003, , .		3
108	Thermoluminescence response of new KClXBr1â^'X:EuCl3 sintered phosphors exposed to beta and gamma radiation. Radiation Protection Dosimetry, 2006, 119, 172-175.	0.8	3

#	Article	IF	CITATIONS
109	Performance of CVD diamond as an optically and thermally stimulated luminescence dosemeter. Radiation Protection Dosimetry, 2006, 119, 226-229.	0.8	3
110	Ionoluminescence characterization of microwave and hotâ€filament CVD diamonds. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2221-2225.	1.8	3
111	Thermoluminescence studies on HPHT diamond crystals exposed to βâ€irradiation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2507-2511.	1.8	3
112	Xâ€Ray Thermoluminescence Dosimetry Characterization of Commercially Available CVD Diamond. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800246.	1.8	3
113	Thermoluminescence α-Al2O3:C detectors (TLD-500K): Some results of a long-term testing. Radiation Measurements, 1995, 24, 427-429.	1.4	2
114	A Method for Evaluating TLD Signal Changes Caused by Climatic and Other Factors in Environmental Measurements. Radiation Protection Dosimetry, 1996, 66, 179-182.	0.8	2
115	Study of the Phototransferred Thermoluminescence in KCl:Eu2+ Phosphors. Radiation Protection Dosimetry, 2002, 100, 183-185.	0.8	2
116	Behaviour ofFandFzCentres Under Thermal Stimulation in KCl:Eu2â [~] ŽIrradiated with Ionizing and UV Radiation. Radiation Effects and Defects in Solids, 2003, 158, 269-274.	1.2	2
117	F-center effects in the luminescent properties of KCl1-xBrxwith divalent lead impurity. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 568-571.	0.8	2
118	Thermoluminescence behaviour of KCL1â^'xBrx:Pb2+ exposed to gamma radiation. Radiation Protection Dosimetry, 2006, 119, 280-284.	0.8	2
119	Correlation between thermally and optically stimulated luminescence in betaâ€irradiated undoped CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2098-2102.	1.8	2
120	A novel fitting method for evaluating the thermal quenching parameters of TL with an application to undoped CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1779-1785.	1.8	2
121	Effect of Au/SiO2 substrate on the structural and optical properties of gallium nitride grown by CVD. Bulletin of Materials Science, 2014, 37, 1625-1630.	1.7	2
122	In x Ga1â^'x N fibres grown on Au/SiO2 by chemical vapour deposition. Bulletin of Materials Science, 2014, 37, 1597-1602.	1.7	2
123	Raman and Thermoluminescence Studies of HPHT Synthetic Nanodiamond Powders. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800267.	1.8	2
124	Thermoluminescence response of detonation diamond microparticles exposed to beta and alpha radiation. Diamond and Related Materials, 2020, 106, 107823.	3.9	2
125	Dependence of Sensitisation of LiF:Mg,Ti (TLD-100) on the Partial Readout End Temperature. Radiation Protection Dosimetry, 1996, 65, 207-210.	0.8	1
126	Defects generated by irradiation with gamma rays in lead doped KCl–KBr mixed single crystals. Radiation Measurements, 2004, 38, 695-698.	1.4	1

#	Article	IF	CITATIONS
127	Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation. Radiation Protection Dosimetry, 2006, 119, 161-163.	0.8	1
128	Dose dependences of radiation induced yield in mixed radiation fields. Radiation Protection Dosimetry, 2006, 119, 80-84.	0.8	1
129	Fabrication and characterization of new LiF:Eu ³⁺ sintered phosphors exposed to beta particles. Radiation Effects and Defects in Solids, 2007, 162, 715-721.	1.2	1
130	On the role of dislocations and aggregates in UV induced afterglow luminescence of KCl:Eu at low temperatures. Journal of Physics Condensed Matter, 2008, 20, 085203.	1.8	1
131	Thermoluminescence kinetic parameters of microwave chemically vapour-deposited diamond films at different gamma dose rates. Radiation Effects and Defects in Solids, 2009, 164, 211-217.	1.2	1
132	Heating rate effects on the TL characteristics of hot filament CVD diamond film. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2114-2118.	1.8	1
133	Magnetite Nanoparticles Functionalized with Vitamin E Analogues: Anticancer Effects. Materials Today: Proceedings, 2016, 3, 703-707.	1.8	1
134	The F band of mixed ionic crystals as a function of temperature. Radiation Effects and Defects in Solids, 1997, 140, 171-179.	1.2	0
135	Evidence of STE emission in low temperature thermoluminescence of pure KCl UV-irradiated at 15 K. Radiation Effects and Defects in Solids, 1998, 146, 251-259.	1.2	0
136	Cathodoluminescence in Europium doped KCI crystals. Radiation Effects and Defects in Solids, 2001, 154, 313-317.	1.2	0
137	Optical absorption, TL and IRSL of basic plagioclase megacrysts from the pinacate (Sonora, Mexico) quaternary alkalic volcanics. Radiation Protection Dosimetry, 2006, 119, 233-237.	0.8	0
138	Dopant concentration effect on the TL response of ZrO 2 :Lu ³⁺ nanocrystals under β-ray irradiation. Proceedings of SPIE, 2007, 6639, 79.	0.8	0
139	Dosimetric Assessment of Mono-Crystalline CVD Diamonds Exposed to Beta and Ultraviolet Radiation. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
140	Assessment of OEP health's risk in nuclear medicine. , 2012, , .		0
141	Analytical approximation of the nanoscale dose distribution in an irradiated medium with an embedded nanoparticle. Journal of Physics: Conference Series, 2012, 393, 012035.	0.4	0
142	Micro-Structures of Nanodiamonds Grown on Silicon by Hot Filament Chemical Vapor Deposition. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	0