Mohammed Seaid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8403726/publications.pdf

Version: 2024-02-01

331670 377865 1,922 155 21 34 citations h-index g-index papers 159 159 159 847 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Simplified PN Approximations to the Equations of Radiative Heat Transfer and Applications. Journal of Computational Physics, 2002, 183, 652-675.	3.8	152
2	Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes. Journal of Computational Physics, 2007, 226, 180-203.	3.8	98
3	NUMERICAL METHODS AND OPTIMAL CONTROL FOR GLASS COOLING PROCESSES. Transport Theory and Statistical Physics, 2002, 31, 513-529.	0.4	50
4	Lattice Boltzmann methods for shallow water flow applications. International Journal for Numerical Methods in Fluids, 2007, 55, 673-692.	1.6	50
5	Non-oscillatory relaxation methods for the shallow-water equations in one and two space dimensions. International Journal for Numerical Methods in Fluids, 2004, 46, 457-484.	1.6	45
6	Efficient numerical methods for radiation in gas turbines. Journal of Computational and Applied Mathematics, 2004, 170, 217-239.	2.0	43
7	A new finite volume method for flux-gradient and source-term balancing in shallow water equations. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 3324-3335.	6.6	43
8	Adaptive solutions of -approximations to radiative heat transfer in glass. International Journal of Thermal Sciences, 2005, 44, 1013-1023.	4.9	40
9	A simple finite volume method for the shallow water equations. Journal of Computational and Applied Mathematics, 2010, 234, 58-72.	2.0	38
10	A flux-limiter method for dam-break flows over erodible sediment beds. Applied Mathematical Modelling, 2012, 36, 4847-4861.	4.2	38
11	Semi-lagrangian integration schemes for viscous incompressible flows. Computational Methods in Applied Mathematics, 2002, 2, 392-409.	0.8	37
12	Radiation models for thermal flows at low Mach number. Journal of Computational Physics, 2006, 215, 506-525.	3.8	36
13	Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method. International Journal for Numerical Methods in Fluids, 2007, 53, 1819-1845.	1.6	34
14	Solution of the Sediment Transport Equations Using a Finite Volume Method Based on Sign Matrix. SIAM Journal of Scientific Computing, 2009, 31, 2866-2889.	2.8	28
15	A partition of unity FEM for timeâ€dependent diffusion problems using multiple enrichment functions. International Journal for Numerical Methods in Engineering, 2013, 93, 245-265.	2.8	28
16	Convergence and stability of finite element modified method of characteristics for the incompressible Navier–Stokes equations. Journal of Numerical Mathematics, 2007, 15, .	3.5	25
17	Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition. Reliability Engineering and System Safety, 2020, 195, 106733.	8.9	25
18	A lattice-Boltzmann relaxation scheme for coupled convection–radiation systems. Journal of Computational Physics, 2007, 226, 1408-1431.	3.8	24

#	Article	IF	CITATIONS
19	A finite volume method for scalar conservation laws with stochastic time–space dependent flux functions. Journal of Computational and Applied Mathematics, 2013, 237, 614-632.	2.0	23
20	Inverse algorithm for real-time road roughness estimation for autonomous vehicles. Archive of Applied Mechanics, 2020, 90, 1333-1348.	2.2	23
21	Simulation of transient gas flow at pipe-to-pipe intersections. International Journal for Numerical Methods in Fluids, 2008, 56, 485-506.	1.6	22
22	Method of lines for stochastic boundary-value problems with additive noise. Applied Mathematics and Computation, 2008, 199, 301-314.	2.2	22
23	A consistent approach for the coupling of radiation and hydrodynamics at low Mach number. Journal of Computational Physics, 2007, 225, 1039-1065.	3.8	21
24	A finite element modified method of characteristics for convective heat transport. Numerical Methods for Partial Differential Equations, 2008, 24, 776-798.	3.6	21
25	A fast finite volume solver for multi-layered shallow water flows with mass exchange. Journal of Computational Physics, 2014, 272, 23-45.	3.8	21
26	Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media. Journal of Computational Physics, 2013, 251, 81-101.	3.8	20
27	A comparison of approximate models for radiation in gas turbines. Progress in Computational Fluid Dynamics, 2004, 4, 191.	0.2	19
28	A twoâ€dimensional finite volume morphodynamic model on unstructured triangular grids. International Journal for Numerical Methods in Fluids, 2010, 63, 1296-1327.	1.6	19
29	An essentially nonâ€oscillatory semiâ€Lagrangian method for tidal flow simulations. International Journal for Numerical Methods in Engineering, 2010, 81, 805-834.	2.8	19
30	Mixed enrichment for the finite element method in heterogeneous media. International Journal for Numerical Methods in Engineering, 2015, 101, 54-78.	2.8	19
31	An enriched finite element model with q-refinement for radiative boundary layers in glass cooling. Journal of Computational Physics, 2014, 258, 718-737.	3.8	18
32	A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients. Journal of Computational Physics, 2019, 396, 702-717.	3.8	18
33	On the Quasi-monotone Modified Method of Characteristics for Transport-diffusion Problems with Reactive Sources. Computational Methods in Applied Mathematics, 2001, 2, 186-210.	0.8	17
34	Numerical Solvers for Radiation and Conduction in High Temperature Gas Flows. Flow, Turbulence and Combustion, 2005, 75, 173-190.	2.6	17
35	An unstructured finiteâ€volume method for coupled models of suspended sediment and bed load transport in shallowâ€water flows. International Journal for Numerical Methods in Fluids, 2013, 72, 967-993.	1.6	17
36	A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials. International Journal of Heat and Mass Transfer, 2020, 155, 119804.	4.8	17

#	Article	IF	Citations
37	Efficient Preconditioning of Linear Systems Arising from the Discretization of Radiative Transfer Equation. Lecture Notes in Computational Science and Engineering, 2003, , 211-236.	0.3	17
38	High-resolution relaxation scheme for the two-dimensional Riemann problems in gas dynamics. Numerical Methods for Partial Differential Equations, 2006, 22, 397-413.	3.6	16
39	A Semi-Lagrangian Method for a Fokker-Planck Equation Describing Fiber Dynamics. Journal of Scientific Computing, 2009, 38, 349-367.	2.3	16
40	Explicit time integration with lumped mass matrix for enriched finite elements solution of time domain wave problems. Applied Mathematical Modelling, 2020, 77, 1273-1293.	4.2	16
41	Stable numerical methods for conservation laws with discontinuous flux function. Applied Mathematics and Computation, 2006, 175, 383-400.	2.2	15
42	Simplified radiative models for low-Mach number reactive flows. Applied Mathematical Modelling, 2008, 32, 971-991.	4.2	15
43	An \$L^2\$-Projection for the Galerkin-Characteristic Solution of Incompressible Flows. SIAM Journal of Scientific Computing, 2011, 33, 3110-3131.	2.8	15
44	A non-homogeneous Riemann solver for shallow water equations in porous media. Applicable Analysis, 2016, 95, 2181-2202.	1.3	15
45	A stabilized meshless method for time-dependent convection-dominated flow problems. Mathematics and Computers in Simulation, 2017, 137, 159-176.	4.4	15
46	Discreteâ€Velocity Models and Relaxation Schemes for Traffic Flows. SIAM Journal of Scientific Computing, 2006, 28, 1582-1596.	2.8	14
47	Lattice Boltzmann simulation of dispersion in twoâ€dimensional tidal flows. International Journal for Numerical Methods in Engineering, 2009, 77, 878-900.	2.8	14
48	Multigrid Newton–Krylov method for radiation in diffusive semitransparent media. Journal of Computational and Applied Mathematics, 2007, 203, 498-515.	2.0	13
49	An Eulerian–Lagrangian method for coupled parabolic-hyperbolic equations. Applied Numerical Mathematics, 2009, 59, 754-768.	2.1	13
50	A finite element semi‣agrangian method with L ² interpolation. International Journal for Numerical Methods in Engineering, 2012, 90, 1485-1507.	2.8	13
51	Projection finite volume method for shallow water flows. Mathematics and Computers in Simulation, 2015, 118, 87-101.	4.4	13
52	A discontinuous Galerkin method for two-layer shallow water equations. Mathematics and Computers in Simulation, 2016, 120, 12-23.	4.4	13
53	Identifying the wavenumber for the inverse Helmholtz problem using an enriched finite element formulation. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 615-629.	6.6	13
54	A local radial basis function projection method for incompressible flows in water eutrophication. Engineering Analysis With Boundary Elements, 2019, 106, 528-540.	3.7	13

#	Article	lF	CITATIONS
55	Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2, 481-496.	1.1	13
56	Compressible and incompressible limits for hyperbolic systems with relaxation. Journal of Computational and Applied Mathematics, 2004, 168, 41-52.	2.0	12
57	A Runge–Kutta–Chebyshev SPH algorithm for elastodynamics. Acta Mechanica, 2016, 227, 1813-1835.	2.1	12
58	Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry. Reliability Engineering and System Safety, 2021, 216, 107923.	8.9	12
59	Eulerian–Lagrangian time-stepping methods for convection-dominated problems. International Journal of Computer Mathematics, 2008, 85, 421, 439 (Math/MathML" altimg="si83.gif" display="inline"	1.8	11
60	overflow="scroll"> <mml:mi>h</mml:mi> <mml:mi>p</mml:mi> -adaptive discontinuous Galerkin methods for simplified <mml:math altimg="si84.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>P</mml:mi></mml:mstyle></mml:mrow><mml:mrow><mml:mstyle< td=""><td>6.6</td><td>11</td></mml:mstyle<></mml:mrow></mml:msub></mml:math>	6.6	11
61	mathvariant="normal"> <mml:mi>N</mml:mi> <td>2.5</td> <td>10</td>	2.5	10
62	Weakly compressible and advection approximations of incompressible viscous flows. Communications in Numerical Methods in Engineering, 2006, 22, 831-847.	1.3	10
63	Lattice Boltzmann simulation of depth-averaged models in flow hydraulics. International Journal of Computational Fluid Dynamics, 2008, 22, 507-522.	1.2	10
64	Mathematical Development and Verification of a Finite Volume Model for Morphodynamic Flow Applications. Advances in Applied Mathematics and Mechanics, 2011, 3, 470-492.	1.2	10
65	A stabilized finite element method for stochastic incompressible Navier–Stokes equations. International Journal of Computer Mathematics, 2012, 89, 2576-2602.	1.8	10
66	Enriched finite elements for initial-value problem of transverse electromagnetic waves in time domain. Computers and Structures, 2017, 182, 354-367.	4.4	10
67	Lagrange–Galerkin method for unsteady free surface water waves. Computing and Visualization in Science, 2006, 9, 209-228.	1.2	9
68	Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws. Numerical Methods for Partial Differential Equations, 2007, 23, 1211-1234.	3.6	9
69	Wick-stochastic finite element solution of reaction–diffusion problems. Journal of Computational and Applied Mathematics, 2007, 203, 516-532.	2.0	9
70	A family of finite volume Eulerian–Lagrangian methods for two-dimensional conservation laws. Journal of Computational and Applied Mathematics, 2015, 285, 181-202.	2.0	9
71	Enhanced conformal perfectly matched layers for Bernstein–Bézier finite element modelling of short wave scattering. Computer Methods in Applied Mechanics and Engineering, 2019, 355, 614-638.	6.6	9
72	A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials. Computational and Applied Mathematics, 2019, 38, 1.	2.2	9

#	Article	IF	Citations
73	A Generalized Rusanov method for Saint-Venant Equations with Variable Horizontal Density. Springer Proceedings in Mathematics, 2011, , 89-96.	0.5	9
74	Uniformly accurate schemes for relaxation approximations to fluid dynamic equations. Applied Mathematics Letters, 2003, 16, 1123-1127.	2.7	8
75	Optimal control in radiative transfer. Optimization Methods and Software, 2007, 22, 917-936.	2.4	8
76	A domain decomposition method for conservation laws with discontinuous flux function. Applied Numerical Mathematics, 2007, 57, 361-373.	2.1	8
77	Coupled finite element–lattice Boltzmann analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 4505-4511.	6.6	8
78	Application of mesh-adaptation for pollutant transport by water flow. Mathematics and Computers in Simulation, 2009, 79, 3415-3423.	4.4	8
79	Solving Wick-stochastic water waves using a Galerkin finite element method. Mathematics and Computers in Simulation, 2009, 79, 3523-3533.	4.4	8
80	Assessment of coupling conditions in water way intersections. International Journal for Numerical Methods in Fluids, 2013, 71, 1438-1460.	1.6	8
81	A meshless method for numerical simulation of depthâ€averaged turbulence flows using a <i>k</i> â€ <i>jµ</i> model. International Journal for Numerical Methods in Fluids, 2016, 80, 3-22.	1.6	8
82	Slope limiters for radial basis functions applied to conservation laws with discontinuous flux function. Engineering Analysis With Boundary Elements, 2016, 66, 49-65.	3.7	8
83	Numerical solution of Rosseland model for transient thermal radiation in non-grey optically thick media using enriched basis functions. Mathematics and Computers in Simulation, 2021, 180, 258-275.	4.4	8
84	A Class of the Relaxation Schemes for Two-Dimensional Euler Systems of Gas Dynamics. Lecture Notes in Computer Science, 2002, , 930-939.	1.3	8
85	Multilayer Saint-Venant equations over movable beds. Discrete and Continuous Dynamical Systems - Series B, 2011, 15, 917-934.	0.9	7
86	Iterative solvers for generalized finite element solution of boundaryâ€value problems. Numerical Linear Algebra With Applications, 2018, 25, e2205.	1.6	7
87	A Highly Accurate Modified Method of Characteristics for Convection–dominated Flow Problems. Computational Methods in Applied Mathematics, 2003, 3, 623-646.	0.8	6
88	Validation of simplified PN models for radiative transfer in combustion systems. Communications in Numerical Methods in Engineering, 2006, 24, 85-96.	1.3	6
89	A Galerkin-Characteristic Method for Large-Eddy Simulation of Turbulent Flow and Heat Transfer. SIAM Journal of Scientific Computing, 2008, 30, 2734-2754.	2.8	6
90	A Spectral Stochastic Semi-Lagrangian Method forÂConvection-Diffusion Equations withÂUncertainty. Journal of Scientific Computing, 2009, 39, 371-393.	2.3	6

#	Article	IF	Citations
91	Numerical modelling of sediment transport in the Nador lagoon (Morocco). Applied Numerical Mathematics, 2012, 62, 1749-1766.	2.1	6
92	A Conservative Semi-Lagrangian Finite Volume Method for Convection–Diffusion Problems on Unstructured Grids. Journal of Scientific Computing, 2020, 85, 1.	2.3	6
93	A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows. Environmental Modelling and Software, 2021, 144, 105176.	4.5	6
94	Simplified PN Models and Natural Convectionâ€"Radiation. Mathematics in Industry, 2008, , 397-401.	0.3	6
95	Improved Applications of Relaxation Schemes for Hyperbolic Systems of Conservation Laws and Convection-diffusion Problems. Computational Methods in Applied Mathematics, 2006, 6, 56-86.	0.8	5
96	Discrete-velocity relaxation methods for large eddy simulation. Applied Mathematics and Computation, 2006, 182, 739-753.	2.2	5
97	Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations. Mathematics of Computation, 2007, 77, 943-966.	2.1	5
98	Numerical simulation of stochastic replicator models in catalyzed RNA-like polymers. Mathematics and Computers in Simulation, 2009, 79, 3577-3586.	4.4	5
99	Combined characteristics and finite volume methods for sediment transport and bed morphology in surface water flows. Mathematics and Computers in Simulation, 2011, 81, 2073-2086.	4.4	5
100	Comparison of unstructured finite-volume morphodynamic models in contracting channel flows. Mathematics and Computers in Simulation, 2011, 81, 2087-2097.	4.4	5
101	Simulation of the Lock-Exchange Hydraulics using the Discontinuous Galerkin Method. International Journal of Computer Applications, 2012, 43, 20-28.	0.2	5
102	A Galerkin-characteristic unified finite element method for moving thermal fronts in porous media. Journal of Computational and Applied Mathematics, 2022, 404, 113159.	2.0	5
103	Analysis of a Galerkin-characteristic finite element method for convection-diffusion problems in porous media. Advances in Pure and Applied Mathematics, 2021, 12, 96-122.	0.4	5
104	A New Monte Carlo Approach for Conservation Laws and Relaxation Systems. Lecture Notes in Computer Science, 2004, , 276-283.	1.3	5
105	Flux limiters in the coupling of radiation and hydrodynamic models. Journal of Computational and Applied Mathematics, 2004, 168, 425-435.	2.0	4
106	Discontinuous Galerkin method for two-dimensional bilayer shallow water equations. Journal of Engineering Mathematics, 2016, 96, 1-21.	1.2	4
107	A new numerical treatment of moving wet/dry fronts in dam-break flows. Journal of Applied Mathematics and Computing, 2019, 59, 489-516.	2.5	4
108	The boundary element method applied to the solution of the anomalous diffusion problem. Engineering Analysis With Boundary Elements, 2019, 109, 129-142.	3.7	4

7

#	Article	IF	CITATIONS
109	A stabilized semiâ€Lagrangian finite element method for natural convection in Darcy flows. Computational and Mathematical Methods, 2021, 3, e1140.	0.8	4
110	Two-dimensional numerical modelling of shallow water flows over multilayer movable beds. Applied Mathematical Modelling, 2020, 88, 474-497.	4.2	4
111	Development of time-space adaptive smoothed particle hydrodynamics method with Runge-Kutta Chebyshev scheme. Engineering Analysis With Boundary Elements, 2021, 126, 55-67.	3.7	4
112	A simple multi-layer finite volume solver for density-driven shallow water flows. Mathematics and Computers in Simulation, 2014, 99, 170-189.	4.4	3
113	Efficient computational models for shallow water flows over multilayer erodible beds. Engineering Computations, 2019, 37, 401-429.	1.4	3
114	Multi-hp adaptive discontinuous Galerkin methods for simplified P approximations of 3D radiative transfer in non-gray media. Applied Numerical Mathematics, 2020, 150, 252-273.	2.1	3
115	An enriched Galerkin-characteristics finite element method for convection-dominated and transport problems. Applied Numerical Mathematics, 2021, 167, 119-142.	2.1	3
116	A Nonintrusive Reduced-Order Model for Uncertainty Quantification in Numerical Solution of One-Dimensional Free-Surface Water Flows Over Stochastic Beds. International Journal of Computational Methods, 2022, 19, .	1.3	3
117	Non-oscillatory methods for relaxation approximation of Hamilton–Jacobi equations. Applied Mathematics and Computation, 2006, 183, 170-183.	2.2	2
118	Finite element P1solution of unsteady thermal flow past a circular cylinder with radiation. International Journal of Computer Mathematics, 2008, 85, 641-656.	1.8	2
119	A two-dimensional finite volume solution of dam-break hydraulics over erodible sediment beds. Springer Proceedings in Mathematics, 2011, , 875-891.	0.5	2
120	A conjugate gradient algorithm for solving the Galerkin-characteristic approximation of interfacial flows. Applied Numerical Mathematics, 2012, 62, 1197-1214.	2.1	2
121	A new composite scheme for two-layer shallow water flows with shocks. Journal of Applied Mathematics and Computing, 2014, 44, 467-489.	2.5	2
122	Fast and accurate simulations of shallow water equations in large networks. Computers and Mathematics With Applications, 2019, 78, 2107-2126.	2.7	2
123	A Three-Dimensional Monotonicity-Preserving Modified Method of Characteristics on Unstructured Tetrahedral Meshes. International Journal of Computational Methods, 2021, 18, 2050027.	1.3	2
124	Enriched Galerkin-Characteristics Finite Element Method for Incompressible NavierStokes Equations. SIAM Journal of Scientific Computing, 2021, 43, A1336-A1361.	2.8	2
125	Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies. Journal of Computational Science, 2021, 53, 101344.	2.9	2
126	A Finite Volume Method for Large-Eddy Simulation of Shallow Water Equations. Springer Proceedings in Mathematics and Statistics, 2014, , 741-748.	0.2	2

#	Article	IF	CITATIONS
127	Derivation of a kinetic model from a stochastic particle system. Kinetic and Related Models, 2008, 1 , 557-572.	0.9	2
128	GPU Accelerated Finite Volume Methods forÂThree-Dimensional Shallow Water Flows. Springer Proceedings in Mathematics and Statistics, 2017, , 137-144.	0.2	2
129	Highâ€order isogeometric modified method of characteristics for twoâ€dimensional coupled Burgers' equations. International Journal for Numerical Methods in Fluids, 2022, 94, 608-631.	1.6	2
130	A semi-Lagrangian Bernstein–Bézier finite element method for two-dimensional coupled Burgers' equations at high Reynolds numbers. Mathematics and Computers in Simulation, 2022, 199, 160-181.	4.4	2
131	Simplified PN finite element approximations for coupled natural convection and radiation heat transfer. Numerical Heat Transfer; Part A: Applications, 2023, 83, 478-502.	2.1	2
132	Large-Eddy Simulation of Thermal Flows based on Discrete-Velocity Models. SIAM Journal of Scientific Computing, 2008, 30, 1756-1777.	2.8	1
133	A Frequency-Domain Approach for the Φ Plus Plus Plus Plus Plus Plus Plus Plus	2.3	1
134	Fast inverse solver for identifying the diffusion coefficient in time-dependent problems using noisy data. Archive of Applied Mechanics, 2021, 91, 1623-1639.	2.2	1
135	Recent Advances in Semi-Lagrangian Modelling of Flow through the Strait of Gibraltar. Lecture Notes in Computer Science, 2004, , 89-96.	1.3	1
136	A comparison between the meshless and the finite volume methods for shallow water flows. Springer Proceedings in Mathematics, 2011, , 13-20.	0.5	1
137	A High-Order Nodal Discontinuous Galerkin Method for 1D Morphodynamic Modelling. International Journal of Computer Applications, 2012, 41, 19-27.	0.2	1
138	Numerical Assessment of Criteria for Mesh Adaptation in the Finite Volume Solution of Shallow Water Equations. Advances in Applied Mathematics and Mechanics, 2020, 12, 503-526.	1.2	1
139	A Cell-Centered Semi-Lagrangian Finite Volume Method for Solving Two-Dimensional Coupled Burgers' Equations. Computational and Mathematical Methods, 2022, 2022, 1-18.	0.8	1
140	An adaptive enriched semi-Lagrangian finite element method for coupled flow-transport problems. Computers and Fluids, 2022, 240, 105474.	2.5	1
141	A multigrid discrete-ordinates solution for isotropic transport equation. Proceedings in Applied Mathematics and Mechanics, 2004, 4, 494-495.	0.2	0
142	Extension of weakly compressible approximations to incompressible thermal flows. Communications in Numerical Methods in Engineering, 2006, 24, 33-48.	1.3	0
143	Incompressible Navierâ€Stokes equation solvers based on lattice Boltzmann relaxation systems. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2100001-2100002.	0.2	0
144	Large eddy simulation of turbulent heat transport in the Strait of Gibraltar. Mathematics and Computers in Simulation, 2009, 79, 3444-3454.	4.4	0

#	Article	IF	CITATIONS
145	Development and verification of a finite volume model for hydraulics over multi-layered erodible beds., 2016,,.		0
146	A hybrid finite volume/finite element method for shallow water waves by static deformation on seabeds. Engineering Computations, 2020, ahead-of-print, .	1.4	0
147	Special volume on mathematical modeling with applications. Numerical Algorithms, 2020, 84, 1239-1240.	1.9	O
148	Multilevel Adaptive Lagrange-Galerkin Methods for Unsteady Incompressible Viscous Flows. Lecture Notes in Computer Science, 2021, , 230-243.	1.3	0
149	An Enhanced Finite Element Algorithm for Thermal Darcy Flows with Variable Viscosity. Lecture Notes in Computer Science, 2021, , 215-229.	1.3	O
150	Animating Water Waves Using Semi-Lagrangian Techniques. Mathematics in Industry, 2006, , 494-498.	0.3	0
151	Adaptive cell-centered finite volume method for non-homogeneous diffusion problems: Application to transport in porous media. Springer Proceedings in Mathematics, 2011, , 79-87.	0.5	O
152	New Criteria for Mesh Adaptation in Finite Volume Simulation of Planar Ionization Wavefront Propagation. Springer Proceedings in Mathematics and Statistics, 2017, , 547-555.	0.2	0
153	Uncertainty Quantification of Bathymetric Effects in a Two-Layer Shallow Water Model: Case of the Gibraltar Strait. Springer Water, 2020, , 779-791.	0.3	О
154	Simulation of Three-Dimensional Free-SurfaceFlows Using Two-Dimensional Multilayer Shallow Water Equations. Communications in Computational Physics, 2020, 27, 1413-1442.	1.7	0
155	Isogeometric semi-Lagrangian analysis for transport problems. Applied Mathematics Letters, 2022, 130, 107994.	2.7	0