Eva Natividad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8403487/publications.pdf Version: 2024-02-01

ένα Νατινίσαο

#	Article	IF	CITATIONS
1	Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques. Ceramics International, 2022, 48, 31191-31202.	4.8	7
2	Challenges and recommendations for magnetic hyperthermia characterization measurements. International Journal of Hyperthermia, 2021, 38, 447-460.	2.5	33
3	Vanadyl spin qubit 2D arrays and their integration on superconducting resonators. Materials Horizons, 2020, 7, 885-897.	12.2	41
4	Anisotropic self-assemblies of magnetic nanoparticles: experimental evidence of low-field deviation from the linear response theory and empirical model. Nanoscale, 2020, 12, 572-583.	5.6	9
5	Pursuit of optimal synthetic conditions for obtaining colloidal zero-valent iron nanoparticles by scanning pulsed laser ablation in liquids. Journal of Industrial and Engineering Chemistry, 2020, 81, 340-351.	5.8	15
6	Growth of a dense gadolinium metal–organic framework on oxide-free silicon for cryogenic local refrigeration. Materials Horizons, 2019, 6, 144-154.	12.2	12
7	A Porphyrin Spin Qubit and Its 2D Framework Nanosheets. Advanced Functional Materials, 2018, 28, 1801695.	14.9	72
8	Omitting the need of external heat capacity data in an adiabatic magnetothermal setup devoted to the characterization of nanomaterials for magnetic hyperthermia. Applied Thermal Engineering, 2017, 117, 409-416.	6.0	1
9	A magnetocaloric composite based on molecular coolers and carbon nanotubes with enhanced thermal conductivity. Materials Horizons, 2017, 4, 464-476.	12.2	8
10	Characterization of Magnetic Hyperthermia in Magnetic Nanoparticles. , 2017, , 261-303.		2
11	AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2017, 421, 138-151.	2.3	31
12	Nano-objects for Addressing the Control of Nanoparticle Arrangement and Performance in Magnetic Hyperthermia. ACS Nano, 2015, 9, 1408-1419.	14.6	75
13	Critical assessment of the nature and properties of Fe(<scp>ii</scp>) triazole-based spin-crossover nanoparticles. Journal of Materials Chemistry C, 2015, 3, 7916-7924.	5.5	43
14	Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium. Journal of Magnetism and Magnetic Materials, 2015, 380, 341-346.	2.3	13
15	Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. RSC Advances, 2014, 4, 28968.	3.6	26
16	A Multifunctional Magnetic Material under Pressure. Chemistry - A European Journal, 2014, 20, 7956-7961.	3.3	15
17	Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. International Journal of Hyperthermia, 2013, 29, 739-751.	2.5	132
18	A spin crossover ferrous complex with ordered magnetic ferric anions. Chemical Communications, 2012, 48, 7604.	4.1	21

Ενα Νατινίδασ

#	Article	IF	CITATIONS
19	New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale, 2012, 4, 3954.	5.6	64
20	Modifying the Heat Transfer and Capillary Pressure of Loop Heat Pipe Wicks with Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 9312-9319.	3.1	19
21	Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Applied Physics Letters, 2011, 98, .	3.3	39
22	Thermoinduced magnetic moment in akagan $ ilde{A}$ $ ilde{O}$ ite nanoparticles. Physical Review B, 2011, 83, .	3.2	17
23	Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. Journal of Applied Physics, 2010, 108, .	2.5	160
24	Specific Absorption Rates and Magnetic Properties of Ferrofluids with Interaction Effects at Low Concentrations. Journal of Physical Chemistry C, 2010, 114, 4916-4922.	3.1	130
25	Akaganeite polymer nanocomposites. Polymer, 2009, 50, 1088-1094.	3.8	25
26	Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. Journal of Magnetism and Magnetic Materials, 2009, 321, 1497-1500.	2.3	77
27	Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. Applied Physics Letters, 2008, 92, .	3.3	66
28	Electrodeposition of Silver Gold Alloys on \${m Bi}_{2}{m Sr}_{2}{m CaCu}_{2}{m O}_{8+delta}\$ Ceramics. IEEE Transactions on Applied Superconductivity, 2007, 17, 3012-3015.	1.7	4
29	Formation, Structure, and Morphology of Triazole-Based Langmuirâ^'Blodgett Films. Langmuir, 2007, 23, 3110-3117.	3.5	36
30	Multiple-length-scale small-angle X-ray scattering analysis on maghemite nanocomposites. Journal of Applied Crystallography, 2007, 40, s696-s700.	4.5	7
31	Thermal conductance measurements of superconducting bi-2212 rods and a bi-2212-based current leadmodule. Journal of Thermal Analysis and Calorimetry, 2006, 84, 307-316.	3.6	11
32	Inhomogeneous oxygen interchange during annealing and cooling of textured bulk Bi2Sr2CaCu2O8+Âsuperconductors. Superconductor Science and Technology, 2004, 17, 308-313.	3.5	5
33	Successful Application of Simplex Methods to the Optimization of Textured Superconducting Ceramics. Journal of the American Ceramic Society, 2004, 87, 1216-1221.	3.8	17
34	Approximation to the laser floating zone preparation of high temperature BSCCO superconductors by DSC. Thermochimica Acta, 2004, 409, 157-164.	2.7	4
35	Chemical and morphological study of the sensitisation, activation and Cu electroless plating of Al2O3 polycrystalline substrate. Surface Science, 2004, 557, 129-143.	1.9	26
36	Radial changes in the microstructure of LFZ-textured Bi-2212 thin rods induced by stoichiometry modifications. Physica C: Superconductivity and Its Applications, 2003, 383, 379-387.	1.2	13

Ενα Νατινίδασ

#	Article	IF	CITATIONS
37	Effect of thermal cycling on the strength and superconducting properties of laser floating zone textured Bi-2212 rods. Physica C: Superconductivity and Its Applications, 2003, 384, 443-450.	1.2	3
38	Destructive and non-destructive determination of the transport current density radial distribution: Application to Bi-2212 textured rods. Physica C: Superconductivity and Its Applications, 2003, 385, 353-362.	1.2	2
39	Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods. Superconductor Science and Technology, 2002, 15, 1022-1029.	3.5	21
40	Influence of the post-annealing cooling rate on the superconducting and mechanical properties of LFZ textured Bi-2212 rods. Superconductor Science and Technology, 2002, 15, 1512-1518.	3.5	4
41	Correlation of radial inhomogeneties and critical current at 77 K in LFZ Bi-2212 textured thin rods. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1051-1054.	1.2	10
42	Enhancement of the 77 K critical currents on thin textured Bi-2212 rods by controlled distribution of secondary phases. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1055-1058.	1.2	1
43	Coaxial configuration of Bi-2212 textured ceramics: a possibility for improved current leads. IEEE Transactions on Applied Superconductivity, 2001, 11, 2559-2562.	1.7	1
44	Design, fabrication and tests of a 600A HTc current lead for the LHC correction magnets. IEEE Transactions on Applied Superconductivity, 2001, 11, 2543-2546.	1.7	20