

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/840332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor. International Journal of Food Microbiology, 2014, 179, 80-84.	2.1	149
2	Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making. International Journal of Food Microbiology, 2017, 250, 59-67.	2.1	145
3	Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. International Journal of Food Microbiology, 2013, 166, 323-330.	2.1	130
4	Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metabolic Engineering, 2019, 52, 87-97.	3.6	118
5	Can we control microbiota in spontaneous food fermentation? – Chinese liquor as a case example. Trends in Food Science and Technology, 2021, 110, 321-331.	7.8	112
6	Construction of Synthetic Microbiota for Reproducible Flavor Compound Metabolism in Chinese Light-Aroma-Type Liquor Produced by Solid-State Fermentation. Applied and Environmental Microbiology, 2019, 85, .	1.4	107
7	Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Scientific Reports, 2017, 7, 40976.	1.6	84
8	<i>In Situ</i> Analysis of Metabolic Characteristics Reveals the Key Yeast in the Spontaneous and Solid-State Fermentation Process of Chinese Light-Style Liquor. Applied and Environmental Microbiology, 2014, 80, 3667-3676.	1.4	80
9	Production of surfactin from waste distillers' grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresource Technology, 2017, 235, 96-103.	4.8	80
10	Improving flavor metabolism of <i>Saccharomyces cerevisiae</i> by mixed culture with <i>Bacillus licheniformis</i> for Chinese <i>Maotai</i> flavor liquor making. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1601-1608.	1.4	76
11	Synergistic Effect of Multiple Saccharifying Enzymes on Alcoholic Fermentation for Chinese Baijiu Production. Applied and Environmental Microbiology, 2020, 86, .	1.4	64
12	Starter Culture Selection for Making Chinese Sesame-Flavored Liquor Based on Microbial Metabolic Activity in Mixed-Culture Fermentation. Applied and Environmental Microbiology, 2014, 80, 4450-4459.	1.4	59
13	Synergistic Effect in Core Microbiota Associated with Sulfur Metabolism in Spontaneous Chinese Liquor Fermentation. Applied and Environmental Microbiology, 2017, 83, .	1.4	54
14	Effect of yeast species on the terpenoids profile of Chinese light-style liquor. Food Chemistry, 2015, 168, 390-395.	4.2	49
15	Flavor Profile of Chinese Liquor Is Altered by Interactions of Intrinsic and Extrinsic Microbes. Applied and Environmental Microbiology, 2016, 82, 422-430.	1.4	47
16	Temperature-Induced Annual Variation in Microbial Community Changes and Resulting Metabolome Shifts in a Controlled Fermentation System. MSystems, 2020, 5, .	1.7	47
17	Zygosaccharomyces bailii Is a Potential Producer of Various Flavor Compounds in Chinese Maotai-Flavor Liquor Fermentation. Frontiers in Microbiology, 2017, 8, 2609.	1.5	46
18	Modeling and Regulation of Higher Alcohol Production through the Combined Effects of the C/N Ratio and Microbial Interaction. Journal of Agricultural and Food Chemistry, 2019, 67, 10694-10701.	2.4	45

Qun Wu

#	Article	IF	CITATIONS
19	Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor. International Journal of Food Microbiology, 2016, 231, 1-9.	2.1	41
20	Chinese Liquor Fermentation: Identification of Key Flavor-Producing <i>Lactobacillus</i> spp. by Quantitative Profiling with Indigenous Internal Standards. Applied and Environmental Microbiology, 2020, 86, .	1.4	41
21	Raw Material Regulates Flavor Formation via Driving Microbiota in Chinese Liquor Fermentation. Frontiers in Microbiology, 2019, 10, 1520.	1.5	40
22	Biodegradation of Ethyl Carbamate and Urea with <i>Lysinibacillus sphaericus</i> MT33 in Chinese Liquor Fermentation. Journal of Agricultural and Food Chemistry, 2018, 66, 1583-1590.	2.4	39
23	Specific Volumetric Weight-Driven Shift in Microbiota Compositions With Saccharifying Activity Change in Starter for Chinese Baijiu Fermentation. Frontiers in Microbiology, 2018, 9, 2349.	1.5	39
24	Zygosaccharomyces pseudobailii, another yeast interspecies hybrid that regained fertility by damaging one of its MAT loci. FEMS Yeast Research, 2018, 18, .	1.1	39
25	Transcriptome Profiling of Heat-Resistant Strain Bacillus licheniformis CGMCC3962 Producing <i>Maotai</i> Flavor. Journal of Agricultural and Food Chemistry, 2012, 60, 2033-2038.	2.4	38
26	Regulating yeast flavor metabolism by controlling saccharification reaction rate in simultaneous saccharification and fermentation of Chinese Maotai-flavor liquor. International Journal of Food Microbiology, 2015, 200, 39-46.	2.1	36
27	Development, validation and application of specific primers for analyzing the clostridial diversity in dark fermentation pit mud by PCR-DGGE. Bioresource Technology, 2014, 163, 40-47.	4.8	29
28	Construction of a synthetic microbial community for the biosynthesis of volatile sulfur compound by multi-module division of labor. Food Chemistry, 2021, 347, 129036.	4.2	27
29	Isolation and identification of a black <i>Aspergillus</i> strain and the effect of its novel protease on the aroma of <i>Moutai-flavoured</i> liquor. Journal of the Institute of Brewing, 2014, 120, 268-276.	0.8	26
30	Genomic and transcriptomic analyses of the Chinese Maotai-flavored liquor yeast MT1 revealed its unique multi-carbon co-utilization. BMC Genomics, 2015, 16, 1064.	1.2	25
31	Immobilized Rhodotorula mucilaginosa: A Novel Urethanase-Producing Strain for Degrading Ethyl Carbamate. Applied Biochemistry and Biotechnology, 2013, 171, 2220-2232.	1.4	22
32	Sugar profile regulates the microbial metabolic diversity in Chinese Baijiu fermentation. International Journal of Food Microbiology, 2021, 359, 109426.	2.1	21
33	Modelling and predicting population of core fungi through processing parameters in spontaneous starter (Daqu) fermentation. International Journal of Food Microbiology, 2022, 363, 109493.	2.1	21
34	Fe Nanoparticles Enhanced Surfactin Production in <i>Bacillus amyloliquefaciens</i> . ACS Omega, 2020, 5, 6321-6329.	1.6	20
35	Increasing 2-furfurylthiol content in Chinese sesame-flavored Baijiu via inoculating the producer of precursor I-cysteine in Baijiu fermentation. Food Research International, 2020, 138, 109757.	2.9	19
36	Effects of glutinous and nonglutinous sorghums on <i>Saccharomyces cerevisiae</i> fermentation for Chinese liquor making. International Journal of Food Science and Technology, 2017, 52, 1348-1357.	1.3	17

Qun Wu

#	Article	IF	CITATIONS
37	On-site calibration method for outdoor binocular stereo vision sensors. Optics and Lasers in Engineering, 2016, 86, 75-82.	2.0	15
38	Identification and quantification of surfactin, a nonvolatile lipopeptide in Moutai liquor. International Journal of Food Properties, 2020, 23, 189-198.	1.3	13
39	Initial fungal diversity impacts flavor compounds formation in the spontaneous fermentation of Chinese liquor. Food Research International, 2022, 155, 110995.	2.9	13
40	Transcriptional Characteristics Associated with Lichenysin Biosynthesis in <i>Bacillus licheniformis</i> from Chinese Maotai-Flavor Liquor Making. Journal of Agricultural and Food Chemistry, 2015, 63, 888-893.	2.4	12
41	Gradient Internal Standard Method for Absolute Quantification of Microbial Amplicon Sequencing Data. MSystems, 2021, 6, .	1.7	11
42	Effect of Microbial Interaction on Urea Metabolism in Chinese Liquor Fermentation. Journal of Agricultural and Food Chemistry, 2017, 65, 11133-11139.	2.4	10
43	Biodegradation of cyanide with Saccharomyces cerevisiae in Baijiu fermentation. Food Control, 2021, 127, 108107.	2.8	10
44	Urea production by yeasts other than Saccharomyces in food fermentation. FEMS Yeast Research, 2017, 17, .	1.1	7
45	Regional aroma characteristics of sorghum for Chinese liquor production. Journal of the Institute of Brewing, 2020, 126, 306-315.	0.8	7
46	Genome Sequence of Bacillus licheniformis CGMCC3963, a Stress-Resistant Strain Isolated in a Chinese Traditional Solid-State Liquor-Making Process. Genome Announcements, 2013, 1, .	0.8	6
47	Fast and Effective Dynamic Optimization for Chemical Processes with Catalyst Deactivation Based on Incremental Encoding and Random Search. Industrial & Engineering Chemistry Research, 2021, 60, 2983-2993.	1.8	2