Aoife McLysaght

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8403280/publications.pdf

Version: 2024-02-01

48 papers

24,941 citations

30 h-index 205818 48 g-index

58 all docs 58 docs citations

58 times ranked 27596 citing authors

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	13.7	21,074
2	Extensive genomic duplication during early chordate evolution. Nature Genetics, 2002, 31, 200-204.	9.4	489
3	Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics, 2005, 21, 1719-1720.	1.8	428
4	Recent de novo origin of human protein-coding genes. Genome Research, 2009, 19, 1752-1759.	2.4	256
5	Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9270-9274.	3.3	245
6	Open questions in the study of de novo genes: what, how and why. Nature Reviews Genetics, 2016, 17, 567-578.	7.7	179
7	Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5346-5351.	3.3	164
8	Extensive gene gain associated with adaptive evolution of poxviruses. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15655-15660.	3. 3	161
9	New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140332.	1.8	136
10	A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities. Molecular Cell, 2018, 70, 408-421.e8.	4. 5	121
11	Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nature Communications, 2017, 8, 14366.	5 . 8	104
12	Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. ELife, 2020, 9, .	2.8	104
13	A survey of host range genes in poxvirus genomes. Infection, Genetics and Evolution, 2013, 14, 406-425.	1.0	97
14	The complex relationship of gene duplication and essentiality. Trends in Genetics, 2009, 25, 152-155.	2.9	90
15	Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nature Communications, 2021, 12, 4489.	5.8	88
16	De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nature Communications, 2020, 11, 781.	5.8	84
17	Dosage-sensitive genes in evolution and disease. BMC Biology, 2017, 15, 78.	1.7	79
18	Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nature Communications, 2021, 12, 1783.	5 . 8	70

#	Article	IF	CITATIONS
19	Estimation of Synteny Conservation and Genome Compaction Between Pufferfish (Fugu) and Human. Yeast, 2000, 1, 22-36.	0.8	64
20	Identification of multiple independent horizontal gene transfers into poxviruses using a comparative genomics approach. BMC Evolutionary Biology, 2008, 8, 67.	3.2	61
21	The 2R hypothesis and the human genome sequence. Journal of Structural and Functional Genomics, 2003, 3, 95-110.	1.2	59
22	High Rate of Recent Intron Gain and Loss in Simultaneously Duplicated Arabidopsis Genes. Molecular Biology and Evolution, 2006, 23, 1548-1557.	3.5	59
23	Ohnologs are overrepresented in pathogenic copy number mutations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 361-366.	3.3	57
24	LineUp: Statistical Detection of Chromosomal Homology With Application to Plant Comparative Genomics. Genome Research, 2003, 13, 999-1010.	2.4	45
25	De Novo Origin of Protein-Coding Genes in Murine Rodents. PLoS ONE, 2012, 7, e48650.	1.1	45
26	De Novo Genes Arise at a Slow but Steady Rate along the Primate Lineage and Have Been Subject to Incomplete Lineage Sorting. Genome Biology and Evolution, 2016, 8, 1222-1232.	1.1	45
27	Interacting Gene Clusters and the Evolution of the Vertebrate Immune System. Molecular Biology and Evolution, 2008, 25, 1855-1862.	3.5	41
28	Genome-wide deserts for copy number variation in vertebrates. Nature Communications, 2013, 4, 2283.	5.8	40
29	Faster Evolving Primate Genes Are More Likely to Duplicate. Molecular Biology and Evolution, 2018, 35, 107-118.	3.5	38
30	Macrosynteny analysis shows the absence of ancient whole-genome duplication in lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1816-1818.	3.3	37
31	Spatial Colocalization of Human Ohnolog Pairs Acts to Maintain Dosage-Balance. Molecular Biology and Evolution, 2016, 33, 2368-2375.	3.5	36
32	Pseudogenes Provide Evolutionary Evidence for the Competitive Endogenous RNA Hypothesis. Molecular Biology and Evolution, 2018, 35, 2886-2899.	3.5	33
33	Positionally biased gene loss after whole genome duplication: Evidence from human, yeast, and plant. Genome Research, 2012, 22, 2427-2435.	2.4	32
34	A chromatin-independent role of Polycomb-like 1 to stabilize p53 and promote cellular quiescence. Genes and Development, 2015, 29, 2231-2243.	2.7	32
35	The 2R hypothesis and the human genome sequence. Journal of Structural and Functional Genomics, 2003, 3, 95-110.	1.2	30
36	Patterns of indirect protein interactions suggest a spatial organization to metabolism. Molecular BioSystems, 2011, 7, 3056.	2.9	27

#	Article	IF	CITATIONS
37	Genomic features in the breakpoint regions between syntenic blocks. Bioinformatics, 2004, 20, i318-i325.	1.8	26
38	Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes. Bioinformatics, 2017, 33, i369-i378.	1.8	24
39	De Novo Origins of Human Genes. PLoS Genetics, 2011, 7, e1002381.	1.5	21
40	Computational Prediction of De Novo Emerged Protein-Coding Genes. Methods in Molecular Biology, 2019, 1851, 63-81.	0.4	20
41	High Frequency of Inversions During Eukaryote Gene Order Evolution. Computational Biology, 2000, , 47-58.	0.1	18
42	Duplicability of self-interacting human genes. BMC Evolutionary Biology, 2010, 10, 160.	3.2	18
43	Evolution of Vertebrate Tissues Driven by Differential Modes of Gene Duplication. DNA Research, 2012, 19, 305-316.	1.5	18
44	Evolutionary steps of sex chromosomes are reflected in retrogenes. Trends in Genetics, 2008, 24, 478-481.	2.9	16
45	The 2R hypothesis and the human genome sequence. , 2003, , 95-110.		4
46	Evidence from Drosophila Supports Higher Duplicability of Faster Evolving Genes. Genome Biology and Evolution, 2022, 14 , .	1.1	4
47	Evolutionary journey and characterisation of a novel panâ€gene associated with beer strains of Saccharomyces cerevisiae. Yeast, 2019, 36, 425-437.	0.8	2
48	Evolutionary Analyses of Protein Interaction Networks., 2009, , 169-181.		2