Maria Jose Garcia Barrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8403267/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highlights regarding prolactin in the dentate gyrus and hippocampus. Vitamins and Hormones, 2022, 118, 479-505.	0.7	1
2	The lack of Irs2 induces changes in the immunocytochemical expression of aromatase in the mouse retina. Annals of Anatomy, 2021, 239, 151726.	1.0	3
3	Role of Flavonoids in the Interactions among Obesity, Inflammation, and Autophagy. Pharmaceuticals, 2020, 13, 342.	1.7	31
4	Opipramol Inhibits Lipolysis in Human Adipocytes without Altering Glucose Uptake and Differently from Antipsychotic and Antidepressant Drugs with Adverse Effects on Body Weight Control. Pharmaceuticals, 2020, 13, 41.	1.7	4
5	Evidences for Expression and Location of ANGPTL8 in Human Adipose Tissue. Journal of Clinical Medicine, 2020, 9, 512.	1.0	14
6	Prolactin system in the hippocampus. Cell and Tissue Research, 2019, 375, 193-199.	1.5	19
7	Methylamine Activates Glucose Uptake in Human Adipocytes Without Overpassing Action of Insulin or Stimulating its Secretion in Pancreatic Islets. Medicines (Basel, Switzerland), 2019, 6, 89.	0.7	9
8	The influence of the lack of insulin receptor substrate 2 (IRS2) on the thyroid gland. Scientific Reports, 2019, 9, 5673.	1.6	6
9	Sequential testicular atrophy involves changes in cellular proliferation and apoptosis associated with variations in aromatase P450 expression levels in Irsâ€2â€deficient mice. Journal of Anatomy, 2019, 234, 227-243.	0.9	4
10	Variations in adrenal gland medulla and dopamine effects induced by the lack of Irs2. Journal of Physiology and Biochemistry, 2018, 74, 667-677.	1.3	2
11	Endothelial immunocytochemical expression of pituitary IL-1β and its relation to ACTH-positive cells is regulated by corticosterone in the male rat. Cytokine, 2017, 99, 9-17.	1.4	2
12	Relation among Aromatase P450 and Tumoral Growth in Human Prolactinomas. International Journal of Molecular Sciences, 2017, 18, 2299.	1.8	12
13	Pituitary Aromatase P450 May Be Involved in Maintenance of the Population of Luteinizing Hormone-Positive Pituitary Cells in Mice. Cells Tissues Organs, 2016, 201, 390-398.	1.3	6
14	Relevance of pituitary aromatase and estradiol on the maintenance of the population of prolactin-positive cells in male mice. Steroids, 2016, 111, 121-126.	0.8	10
15	Dopamine Modulates Insulin Release and Is Involved in the Survival of Rat Pancreatic Beta Cells. PLoS ONE, 2015, 10, e0123197.	1.1	33
16	Local Transformations of Androgens into Estradiol by Aromatase P450 Is Involved in the Regulation of Prolactin and the Proliferation of Pituitary Prolactin-Positive Cells. PLoS ONE, 2014, 9, e101403.	1.1	20
17	Is there an optimal dose for dietary linoleic acid? Lessons from essential fatty acid deficiency supplementation and adipocyte functions in rats. Journal of Physiology and Biochemistry, 2014, 70, 615-627.	1.3	11
18	The expression of AIB1 correlates with cellular proliferation in human prolactinomas. Annals of Anatomy, 2013, 195, 253-259.	1.0	6

#	Article	IF	CITATIONS
19	The activity and proliferation of pituitary prolactin-positive cells and pituitary VIP-positive cells are regulated by interleukin 6. Histology and Histopathology, 2013, 28, 1595-604.	0.5	5
20	Differential sensitivity to adrenergic stimulation underlies the sexual dimorphism in the development of diabetes caused by Irs-2 deficiency. Biochemical Pharmacology, 2011, 81, 279-288.	2.0	15
21	Comparative effects of idazoxan, efaroxan, and BU 224 on insulin secretion in the rabbit: Not only interaction with pancreatic imidazoline I2 binding sites. Health, 2010, 02, 112-123.	0.1	3
22	Oral Insulin-Mimetic Compounds That Act Independently of Insulin. Diabetes, 2007, 56, 486-493.	0.3	60
23	The imidazoline I2-site ligands BU 224 and 2-BFI inhibit MAO-A and MAO-B activities, hydrogen peroxide production, and lipolysis in rodent and human adipocytes. European Journal of Pharmacology, 2006, 552, 20-30.	1.7	25
24	Methylamine but not mafenide mimics insulin-like activity of the semicarbazide-sensitive amine oxidase-substrate benzylamine on glucose tolerance and on human adipocyte metabolism. Pharmacological Research, 2005, 52, 475-484.	3.1	28
25	Benzylamine Exhibits Insulin-Like Effects on Glucose Disposal, Glucose Transport, and Fat Cell Lipolysis in Rabbits and Diabetic Mice. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1020-1028.	1.3	27
26	Ras-GRF1 signaling is required for normal Â-cell development and glucose homeostasis. EMBO Journal, 2003, 22, 3039-3049.	3.5	82
27	Role of μ-opioid receptors in insulin release in the presence of inhibitory and excitatory secretagogues. European Journal of Pharmacology, 2002, 448, 95-104.	1.7	19
28	Effects of verapamil and elgodipine on isoprenaline-induced metabolic responses in rabbits. European Journal of Pharmacology, 2001, 415, 105-115.	1.7	7
29	Role of alpha2-adrenoceptors on the hyperglycaemic and insulin secretory effects derived from alpha1- and beta-adrenoceptor stimulation in the rabbit. Autonomic and Autacoid Pharmacology, 1998, 18, 287-296.	0.7	10
30	Sulphonylureas do not increase insulin secretion by a mechanism other than a rise in cytoplasmic Ca2+ in pancreatic B-cells. European Journal of Pharmacology, 1996, 298, 279-286.	1.7	35
31	The imidazoline SL 84.0418 shows stereoselectivity in blocking α2-adrenoceptors but not ATP-sensitive K+ channels in pancreatic B-cells. European Journal of Pharmacology, 1994, 264, 81-84.	1.7	14
32	Coexistence of β2- and β3-adrenoceptors in plasma potassium control in conscious rabbits. Autonomic and Autacoid Pharmacology, 1993, 13, 227-236.	0.7	12
33	Role of Ca2+ channel blockers in insulin secretion resulting from α1- and β-adrenoceptor stimulation in the rabbit. European Journal of Pharmacology, 1992, 219, 461-464.	1.7	3
34	Role of $\hat{I}\pm\hat{a}\in a$ drenoceptors in control of plasma potassium in conscious rabbits. Autonomic and Autacoid Pharmacology, 1991, 11, 305-313.	0.7	6
35	Pancreatic Î ² Cells*This work was supported by the Interuniversity Poles of Attraction Program (P4/21), Belgian State Prime Minister's Office, Federal Office for Scientific, Technical, and Cultural Affairs; by Grant 3.4552.98 from the Fonds de la Recherche Scientifique Meldicale, Brussels; and by Grant		9