List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402907/publications.pdf Version: 2024-02-01

Ημέο Ρροενίδε

#	Article	IF	CITATIONS
1	The UU-Net: Reversible Face De-Identification for Visual Surveillance Video Footage. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 496-509.	8.3	13
2	Peaches Detection Using a Deep Learning Technique—A Contribution to Yield Estimation, Resources Management, and Circular Economy. Climate, 2022, 10, 11.	2.8	6
3	YinYang-Net: Complementing Face and Body Information for Wild Gender Recognition. IEEE Access, 2022, 10, 28122-28132.	4.2	2
4	Predicting CVSS Metric via Description Interpretation. IEEE Access, 2022, 10, 59125-59134.	4.2	6
5	A Quadruplet Loss for Enforcing Semantically Coherent Embeddings in Multi-Output Classification Problems. IEEE Transactions on Information Forensics and Security, 2021, 16, 800-811.	6.9	4
6	Is Gender "In-the-Wild―Inference Really a Solved Problem?. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3, 573-582.	4.4	2
7	The P-DESTRE: A Fully Annotated Dataset for Pedestrian Detection, Tracking, and Short/Long-Term Re-Identification From Aerial Devices. IEEE Transactions on Information Forensics and Security, 2021, 16, 1696-1708.	6.9	29
8	SSS-PR: A short survey of surveys in person re-identification. Pattern Recognition Letters, 2021, 143, 50-57.	4.2	26
9	Person re-identification: Implicitly defining the receptive fields of deep learning classification frameworks. Pattern Recognition Letters, 2021, 145, 23-29.	4.2	4
10	Iterative weak/self-supervised classification framework for abnormal events detection. Pattern Recognition Letters, 2021, 145, 50-57.	4.2	20
11	A Deep Adversarial Framework for Visually Explainable Periocular Recognition. , 2021, , .		3
12	Editorial to special issue on novel insights on ocular biometrics. Image and Vision Computing, 2021, 112, 104227.	4.5	0
13	A Short Survey on Machine Learning Explainability: An Application to Periocular Recognition. Electronics (Switzerland), 2021, 10, 1861.	3.1	4
14	Human Behavior Analysis: A Survey on Action Recognition. Applied Sciences (Switzerland), 2021, 11, 8324.	2.5	9
15	You look so different! Haven't I seen you a long time ago?. Image and Vision Computing, 2021, 115, 104288.	4.5	5
16	REGINA—Reasoning Graph Convolutional Networks in Human Action Recognition. IEEE Transactions on Information Forensics and Security, 2021, 16, 5442-5451.	6.9	4
17	GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1038-1048.	10.8	89
18	Unconstrained Periocular Recognition: Using Generative Deep Learning Frameworks for Attribute		9

Normalization., 2020,,.

#	Article	IF	CITATIONS
19	Human Attribute Recognition— A Comprehensive Survey. Applied Sciences (Switzerland), 2020, 10, 5608.	2.5	10
20	Deep representations for crossâ€spectral ocular biometrics. IET Biometrics, 2020, 9, 68-77.	2.5	17
21	Human Activity Analysis: Iterative Weak/Self-Supervised Learning Frameworks for Detecting Abnormal Events. , 2020, , .		12
22	All-in-one "HairNet― A Deep Neural Model for Joint Hair Segmentation and Characterization. , 2020, , .		2
23	Decision-making support system for fruit diseases classification using Deep Learning. , 2020, , .		12
24	"A Leopard Cannot Change Its Spots― Improving Face Recognition Using 3D-Based Caricatures. IEEE Transactions on Information Forensics and Security, 2019, 14, 151-161.	6.9	9
25	FaceGenderID: Exploiting Gender Information in DCNNs Face Recognition Systems. , 2019, , .		15
26	Segmentation-Less and Non-Holistic Deep-Learning Frameworks for Iris Recognition. , 2019, , .		11
27	A Reminiscence of " <italic>Mastermind</italic> †Iris/Periocular Biometrics by " <italic>In-Set</italic> †CNN Iterative Analysis. IEEE Transactions on Information Forensics and Security, 2019, 14, 1702-1712.	6.9	15
28	MICHE Competitions: A Realistic Experience with Uncontrolled Eye Region Acquisition. Advances in Computer Vision and Pattern Recognition, 2019, , 67-104.	1.3	1
29	Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks. IEEE Transactions on Information Forensics and Security, 2018, 13, 888-896.	6.9	95
30	Insights into the results of MICHE I - Mobile Iris CHallenge Evaluation. Pattern Recognition, 2018, 74, 286-304.	8.1	37
31	Biometric Recognition in Surveillance Environments Using Master-Slave Architectures. , 2018, , .		Ο
32	Trends and Controversies. IEEE Intelligent Systems, 2018, 33, 41-67.	4.0	9
33	QUIS AMPI: an annotated multiâ€biometrics data feed from surveillance scenarios. IET Biometrics, 2018, 7, 371-379.	2.5	8
34	Experiments with Ocular Biometric Datasets: A Practitioner's Guideline. IT Professional, 2018, 20, 50-63.	1.5	4
35	An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics. Pattern Analysis and Applications, 2017, 20, 73-86.	4.6	6
36	Soft Biometrics: Globally Coherent Solutions for Hair Segmentation and Style Recognition Based on Hierarchical MRFs. IEEE Transactions on Information Forensics and Security, 2017, 12, 1637-1645.	6.9	10

#	Article	IF	CITATIONS
37	Fusing Vantage Point Trees and Linear Discriminants for Fast Feature Classification. Journal of Classification, 2017, 34, 85-107.	2.2	1
38	Results from MICHE II – Mobile Iris CHallenge Evaluation II. Pattern Recognition Letters, 2017, 91, 3-10.	4.2	32
39	Exploiting Data Redundancy for Error Detection in Degraded Biometric Signatures Resulting From in the Wild Environments. , 2017, , .		0
40	IRINA: Iris Recognition (Even) in Inaccurately Segmented Data. , 2017, , .		18
41	Unconstrained Data Acquisition Frameworks and Protocols. , 2017, , 1-30.		Ο
42	Biometric recognition in surveillance scenarios: a survey. Artificial Intelligence Review, 2016, 46, 515-541.	15.7	45
43	Joint Head Pose/Soft Label Estimation for Human Recognition <italic>In-The-Wild</italic> . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38, 2444-2456.	13.9	21
44	Visible-wavelength iris/periocular imaging and recognition surveillance environments. Image and Vision Computing, 2016, 55, 22-25.	4.5	10
45	ICB-RW 2016: International challenge on biometric recognition in the wild. , 2016, , .		6
46	Unconstrained Iris Recognition in Visible Wavelengths. Advances in Computer Vision and Pattern Recognition, 2016, , 321-358.	1.3	6
47	Mobile Iris CHallenge Evaluation II: Results from the ICPR competition. , 2016, , .		10
48	Robust Periocular Recognition by Fusing Sparse Representations of Color and Geometry Information. Journal of Signal Processing Systems, 2016, 82, 403-417.	2.1	8
49	Periocular recognition: how much facial expressions affect performance?. Pattern Analysis and Applications, 2016, 19, 517-530.	4.6	12
50	A Master-Slave Calibration Algorithm with Fish-Eye Correction. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	4
51	BioHDD: a dataset for studying biometric identification on heavily degraded data. IET Biometrics, 2015, 4, 1-9.	2.5	4
52	Acquiring high-resolution face images in outdoor environments: A master-slave calibration algorithm. , 2015, , .		17
53	Dynamic camera scheduling for visual surveillance in crowded scenes using Markov random fields. , 2015, , .		8
54	Iris Recognition: What Is Beyond Bit Fragility?. IEEE Transactions on Information Forensics and Security, 2015, 10, 321-332.	6.9	19

#	Article	IF	CITATIONS
55	Guest editorial introduction to the special executable issue on "Mobile Iris CHallenge Evaluation part I (MICHE I)". Pattern Recognition Letters, 2015, 57, 1-3.	4.2	2
56	A Calibration Algorithm for Multi-camera Visual Surveillance Systems Based on Single-View Metrology. Lecture Notes in Computer Science, 2015, , 552-559.	1.3	7
57	Face recognition: handling data misalignments implicitly by fusion of sparse representations. IET Computer Vision, 2015, 9, 216-225.	2.0	2
58	Performance evaluation of keypoint detection and matching techniques on grayscale data. Signal, Image and Video Processing, 2015, 9, 1009-1019.	2.7	11
59	Quis-Campi: Extending in the Wild Biometric Recognition to Surveillance Environments. Lecture Notes in Computer Science, 2015, , 59-68.	1.3	11
60	Segmenting the periocular region using a hierarchical graphical model fed by texture / shape information and geometrical constraints. , 2014, , .		7
61	Detection and separation of overlapping cells based on contour concavity for <i>Leishmania</i> images. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 491-500.	1.5	10
62	Automatic face recognition in HDR imaging. Proceedings of SPIE, 2014, , .	0.8	2
63	Periocular biometrics: constraining the elastic graph matching algorithm to biologically plausible distortions. IET Biometrics, 2014, 3, 167-175.	2.5	18
64	ReigSAC: fast discrimination of spurious keypoint correspondences on planar surfaces. Machine Vision and Applications, 2014, 25, 763-773.	2.7	2
65	Ocular Biometrics by Score-Level Fusion of Disparate Experts. IEEE Transactions on Image Processing, 2014, 23, 5082-5093.	9.8	29
66	Fast and globally convex multiphase active contours for brain MRI segmentation. Computer Vision and Image Understanding, 2014, 125, 237-250.	4.7	40
67	Iris Biometrics: Synthesis of Degraded Ocular Images. IEEE Transactions on Information Forensics and Security, 2013, 8, 1115-1125.	6.9	12
68	Iris Biometrics: Indexing and Retrieving Heavily Degraded Data. IEEE Transactions on Information Forensics and Security, 2013, 8, 1975-1985.	6.9	15
69	Creating synthetic IrisCodes to feed biometrics experiments. , 2013, , .		2
70	Facial expressions: Discriminability of facial regions and relationship to biometrics recognition. , 2013, , .		3
71	Periocular biometrics: An emerging technology for unconstrained scenarios. , 2013, , .		28
72	Robust periocular recognition by fusing local to holistic sparse representations. , 2013, , .		8

5

#	Article	IF	CITATIONS
73	Compensating for pose and illumination in unconstrained periocular biometrics. International Journal of Biometrics, 2013, 5, 336.	0.4	15
74	Automatic Annotation of Leishmania Infections in Fluorescence Microscopy Images. Lecture Notes in Computer Science, 2013, , 613-620.	1.3	0
75	Multimodal ocular biometrics approach: A feasibility study. , 2012, , .		28
76	Periocular recognition: Analysis of performance degradation factors. , 2012, , .		90
77	Fusing color and shape descriptors in the recognition of degraded iris images acquired at visible wavelengths. Computer Vision and Image Understanding, 2012, 116, 167-178.	4.7	24
78	Toward Covert Iris Biometric Recognition: Experimental Results From the NICE Contests. IEEE Transactions on Information Forensics and Security, 2012, 7, 798-808.	6.9	83
79	UBEAR: A dataset of ear images captured on-the-move in uncontrolled conditions. , 2011, , .		28
80	A robust eye-corner detection method for real-world data. , 2011, , .		11
81	Quality Assessment of Degraded Iris Images Acquired in the Visible Wavelength. IEEE Transactions on Information Forensics and Security, 2011, 6, 82-95.	6.9	34
82	Introduction to the special issue on unconstrained biometrics: advances and trends. Signal, Image and Video Processing, 2011, 5, 399-400.	2.7	3
83	Caries Detection in Panoramic Dental X-ray Images. Computational Methods in Applied Sciences (Springer), 2011, , 175-190.	0.3	28
84	Iris recognition: Analysis of the error rates regarding the accuracy of the segmentation stage. Image and Vision Computing, 2010, 28, 202-206.	4.5	78
85	Introduction to the Special Issue on the Segmentation of Visible Wavelength Iris Images Captured At-a-distance and On-the-move. Image and Vision Computing, 2010, 28, 213-214.	4.5	22
86	An iris recognition approach through structural pattern analysis methods. Expert Systems, 2010, 27, 6-16.	4.5	17
87	Iris Recognition: Preliminary Assessment about the Discriminating Capacity of Visible Wavelength Data. , 2010, , .		4
88	Iris recognition: Analyzing the distribution of the iriscodes concordant bits. , 2010, , .		5
89	Iris Recognition: On the Segmentation of Degraded Images Acquired in the Visible Wavelength. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32, 1502-1516.	13.9	188
90	The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-the-Move and At-a-Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32, 1529-1535.	13.9	400

#	Article	IF	CITATIONS
91	Cross-polarization interference cancelation (XPIC) performance in presence of non-linear effects. , 2010, , .		5
92	On the feasibility of the visible wavelength, at-a-distance and on-the-move iris recognition. , 2009, , .		13
93	On the Role of Interpolation in the Normalization of Non-ideal Visible Wavelength Iris Images. , 2009, ,		17
94	Biometric Recognition: When Is Evidence Fusion Advantageous?. Lecture Notes in Computer Science, 2009, , 698-708.	1.3	2
95	Evaluating WiMAX for vehicular communication applications. , 2008, , .		6
96	Combining rectangular and triangular image regions to perform real-time face detection. , 2008, , .		2
97	Iris Recognition: A Method to Segment Visible Wavelength Iris Images Acquired On-the-Move and At-a-Distance. Lecture Notes in Computer Science, 2008, , 731-742.	1.3	33
98	Optimal Design of Digital IIR Filters Using Real Structured Genetic Algorithm. , 2007, , .		1
99	Iris Recognition: A Method to Increase the Robustness to Noisy Imaging Environments through the Selection of the Higher Discriminating Features. , 2007, , .		1
100	Toward Noncooperative Iris Recognition: A Classification Approach Using Multiple Signatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29, 607-612.	13.9	167
101	The NICE.I: Noisy Iris Challenge Evaluation - Part I. , 2007, , .		56
102	A Structural Pattern Analysis Approach to Iris Recognition. Advances in Intelligent and Soft Computing, 2007, , 731-738.	0.2	1
103	lris Recognition: An Entropy-Based Coding Strategy Robust to Noisy Imaging Environments. , 2007, , 621-632.		5
104	Iris Recognition: Measuring Feature's Quality for the Feature Selection in Unconstrained Image Capture Environments. , 2006, , .		7
105	A method for the identification of inaccuracies in pupil segmentation. , 2006, , .		7
106	A Method for the Identification of Noisy Regions in Normalized Iris Images. , 2006, , .		28
107	Iris Recognition: An Analysis of the Aliasing Problem in the Iris Normalization Stage. , 2006, , .		20
108	Iris segmentation methodology for non-cooperative recognition. IET Computer Vision, 2006, 153, 199.	1.3	174

#	Article	IF	CITATIONS
109	Using Ocular Data for Unconstrained Biometric Recognition. Advances in Computational Intelligence and Robotics Book Series, 0, , 252-271.	0.4	0