Jorge Escorihuela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/840287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution of Relaxation Times: Debye Length Distribution vs Electrode Polarization by a Coleâ^'Cole Relaxation Model. Journal of the Electrochemical Society, 2022, 169, 013506.	1.3	6
2	Intramolecular rhodium-catalysed [2 + 2 + 2] cycloaddition of linear chiral <i>N</i> -bridged triynes: straightforward access to fused tetrahydroisoquinoline core. Organic and Biomolecular Chemistry, 2022, 20, 2433-2445.	1.5	2
3	Asymmetric Michael Addition in Synthesis of \hat{I}^2 -Substituted GABA Derivatives. Molecules, 2022, 27, 3797.	1.7	15
4	Diffusivity and free anion concentration of ionic liquid composite polybenzimidazole membranes. RSC Advances, 2021, 11, 26379-26390.	1.7	1
5	Diastereoselectivity of the Addition of Propargylic Magnesium Reagents to Fluorinated Aromatic Sulfinyl Imines. Organic Letters, 2021, 23, 3691-3695.	2.4	4
6	Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates. Nanomaterials, 2021, 11, 1093.	1.9	5
7	Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers, 2021, 13, 3064.	2.0	90
8	Unveiling anion-induced folding in tripodal imidazolium receptors by ion-mobility mass spectrometry. Chemical Communications, 2021, 57, 8616-8619.	2.2	2
9	Asymmetric Methods for Carbonâ€Fluorine Bond Formation. European Journal of Organic Chemistry, 2021, 2021, 5946-5974.	1.2	14
10	On the Stability and Formation of Pillar[<i>n</i>]arenes: a DFT Study. Journal of Organic Chemistry, 2021, 86, 14956-14963.	1.7	10
11	Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. Molecules, 2021, 26, 7221.	1.7	13
12	Pauson–Khand reaction of fluorinated compounds. Beilstein Journal of Organic Chemistry, 2020, 16, 1662-1682.	1.3	13
13	Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter, 2020, 16, 7624-7635.	1.2	9
14	Cycloaddition of Strained Cyclic Alkenes and <i>Ortho</i> -Quinones: A Distortion/Interaction Analysis. Journal of Organic Chemistry, 2020, 85, 13557-13566.	1.7	8
15	Acylsemicarbazide Moieties with Dynamic Reversibility and Multiple Hydrogen Bonding for Transparent, High Modulus, and Malleable Polymers. Macromolecules, 2020, 53, 7914-7924.	2.2	62
16	Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers, 2020, 12, 1861.	2.0	84
17	The Rutheniumâ€Catalyzed Domino Cross Enyne Metathesis/Ringâ€Closing Metathesis in the Synthesis of Enantioenriched Nitrogen ontaining Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 4193-4207.	1.2	9
18	A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 2020, 12, 1374.	2.0	22

Jorge Escorihuela

#	Article	IF	CITATIONS
19	Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 2020, 354, 136666.	2.6	20
20	Asymmetric Synthesis of Fluorinated Monoterpenic Alkaloid Derivatives from Chiral Fluoroalkyl Aldimines via the Pausonâ€Khand Reaction. Advanced Synthesis and Catalysis, 2020, 362, 1378-1384.	2.1	9
21	Proton Conductivity of Composite Polyelectrolyte Membranes with Metalâ€Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 2019, 6, 1801146.	1.9	130
22	Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 2019, 11, 1182.	2.0	24
23	Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. Journal of Materials Chemistry A, 2019, 7, 15933-15943.	5.2	101
24	lonic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 2019, 11, 732.	2.0	42
25	Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Organic Chemistry Frontiers, 2019, 6, 1214-1225.	2.3	9
26	New structural insights into the role of TROVE2 complexes in the on-set and pathogenesis of systemic lupus erythematosus determined by a combination of QCM-D and DPI. Analytical and Bioanalytical Chemistry, 2019, 411, 4709-4720.	1.9	3
27	Strainâ€Promoted Cycloaddition of Cyclopropenes with <i>o</i> â€Quinones: A Rapid Click Reaction. Angewandte Chemie, 2018, 130, 10275-10279.	1.6	9
28	Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies. Journal of Organic Chemistry, 2018, 83, 244-252.	1.7	24
29	Strainâ€Promoted Cycloaddition of Cyclopropenes with <i>o</i> â€Quinones: A Rapid Click Reaction. Angewandte Chemie - International Edition, 2018, 57, 10118-10122.	7.2	31
30	Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 2018, 20, 10173-10184.	1.3	25
31	Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 2018, 8, 1042.	1.9	35
32	Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 2018, 8, 775.	1.9	92
33	Innentitelbild: Strain-Promoted Cycloaddition of Cyclopropenes with o -Quinones: A Rapid Click Reaction (Angew. Chem. 32/2018). Angewandte Chemie, 2018, 130, 10136-10136.	1.6	0
34	Experimental Study of the Oriented Immobilization of Antibodies on Photonic Sensing Structures by Using Protein A as an Intermediate Layer. Sensors, 2018, 18, 1012.	2.1	12
35	Rapid and Complete Surface Modification with Strainâ€Promoted Oxidationâ€Controlled Cyclooctyneâ€1,2â€Quinone Cycloaddition (SPOCQ). Angewandte Chemie, 2017, 129, 3347-3351.	1.6	7
36	Organic Monolayers by B(C ₆ F ₅) ₃ -Catalyzed Siloxanation of Oxidized Silicon Surfaces. Langmuir, 2017, 33, 2185-2193.	1.6	23

#	Article	IF	CITATIONS
37	Rapid and Complete Surface Modification with Strainâ€Promoted Oxidationâ€Controlled Cyclooctyneâ€1,2â€Quinone Cycloaddition (SPOCQ). Angewandte Chemie - International Edition, 2017, 56, 3299-3303.	7.2	29
38	Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols. Journal of the American Chemical Society, 2017, 139, 5870-5876.	6.6	33
39	Improved Performance of DNA Microarray Multiplex Hybridization Using Probes Anchored at Several Points by Thiol–Ene or Thiol–Yne Coupling Chemistry. Bioconjugate Chemistry, 2017, 28, 496-506.	1.8	20
40	Approach Matters: The Kinetics of Interfacial Inverseâ€Electron Demand Diels–Alder Reactions. Chemistry - A European Journal, 2017, 23, 13015-13022.	1.7	11
41	Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 2017, 7, 53481-53491.	1.7	38
42	Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. Langmuir, 2016, 32, 3412-3419.	1.6	18
43	Characterization of the laccase-mediated oligomerization of 4-hydroxybenzoic acid. RSC Advances, 2016, 6, 99367-99375.	1.7	12
44	Mechanistic implications of the enantioselective addition of alkylzinc reagents to aldehydes catalyzed by nickel complexes with α-amino amide ligands. Organic and Biomolecular Chemistry, 2016, 14, 11125-11136.	1.5	7
45	Click Chemistry: Metalâ€Free Click Chemistry Reactions on Surfaces (Adv. Mater. Interfaces 13/2015). Advanced Materials Interfaces, 2015, 2, .	1.9	2
46	Metalâ€Free Click Chemistry Reactions on Surfaces. Advanced Materials Interfaces, 2015, 2, 1500135.	1.9	106
47	Dual stereocontrolled alkylation of aldehydes with polystyrene-supported nickel complexes derived from α-amino amides. RSC Advances, 2015, 5, 14653-14662.	1.7	5
48	Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 2015, 5, 34415-34423.	1.7	28
49	Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic and Biomolecular Chemistry, 2015, 13, 5450-5459.	1.5	24
50	Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chemical Reviews, 2015, 115, 265-294.	23.0	68
51	Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. Journal of Materials Chemistry B, 2014, 2, 8510-8517.	2.9	30
52	Direct and label-free monitoring oligonucleotide immobilization, non-specific binding and DNA biorecognition. Sensors and Actuators B: Chemical, 2014, 192, 221-228.	4.0	10
53	Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene "Click―Chemistry. Bioconjugate Chemistry, 2014, 25, 618-627.	1.8	41
54	Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014, 2014, 5356-5363.	1.2	31

Jorge Escorihuela

#	Article	IF	CITATIONS
55	C2 symmetrical nickel complexes derived from α-amino amides as efficient catalysts for the enantioselective addition of dialkylzinc reagents to aldehydes. Tetrahedron, 2013, 69, 551-558.	1.0	18
56	New advances in dual stereocontrol for asymmetric reactions. Chemical Society Reviews, 2013, 42, 5595.	18.7	104
57	Polymer-supported chiral α-amino amides for the asymmetric addition of diethylzinc to aldehydes: Transforming an inactive homogeneous system into an efficient catalyst. Applied Catalysis A: General, 2013, 462-463, 23-30.	2.2	17
58	Real-time observation of antigen–antibody association using a low-cost biosensing system based on photonic bandgap structures. Optics Letters, 2012, 37, 3684.	1.7	3
59	DNA microarrays on silicon surfaces through thiol-ene chemistry. Chemical Communications, 2012, 48, 2116.	2.2	42
60	Development of Oligonucleotide Microarrays onto Si-Based Surfaces via Thioether Linkage Mediated by UV Irradiation. Bioconjugate Chemistry, 2012, 23, 2121-2128.	1.8	21
61	Copper(ii) complexes of bis(amino amide) ligands: effect of changes in the amino acid residue. Dalton Transactions, 2012, 41, 6764.	1.6	36
62	Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors. Analytical and Bioanalytical Chemistry, 2012, 404, 2831-2840.	1.9	23
63	Chiral bis(amino amides) as chiral solvating agents for enantiomeric excess determination of α-hydroxy and arylpropionic acids. Tetrahedron: Asymmetry, 2010, 21, 982-989.	1.8	36
64	Coordination of Cu ²⁺ lons to <i>C</i> ₂ Symmetric Pseudopeptides Derived from Valine. Inorganic Chemistry, 2010, 49, 7841-7852.	1.9	32
65	A simple peptidomimetic that self-associates on the solid state to form a nanoporous architecture containing chiral ï€-channels. CrystEngComm, 2010, 12, 1722.	1.3	15
66	Synthesis of new chiral imidazolium salts derived from amino acids: their evaluation in chiral molecular recognition. Tetrahedron: Asymmetry, 2009, 20, 999-1003.	1.8	39
67	New chiral tetraaza ligands for the efficient enantioselective addition of dialkylzinc to aromatic aldehydes. Tetrahedron, 2008, 64, 9717-9724.	1.0	34
68	Enantioselective nickel-catalyzed conjugate addition of dialkylzinc to chalcones using chiral α-amino amides. Tetrahedron Letters, 2008, 49, 6885-6888.	0.7	23
69	Efficient Chirality Switching in the Addition of Diethylzinc to Aldehydes in the Presence of Simple Chiral αâ€Amino Amides. Angewandte Chemie - International Edition, 2007, 46, 9002-9005.	7.2	54
70	Nickel Complexes from α-Amino Amides as Efficient Catalysts for the Enantioselective Et2Zn Addition to Benzaldehyde ChemInform, 2003, 34, no.	0.1	0
71	Nickel complexes from α-amino amides as efficient catalysts for the enantioselective Et2Zn addition to benzaldehyde. Tetrahedron Letters, 2003, 44, 6891-6894.	0.7	53
72	Preparation and Optimization of Polymer-Supported and Amino Alcohol Based Enantioselective Reagents and Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 5977-5982.	1.8	12