Foo Wah Low

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402857/publications.pdf

Version: 2024-02-01

37	828	16 h-index	28
papers	citations		g-index
38	38	38	1048
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphene and Its Derivatives for Supercapacitor Application. , 2022, , 465-474.		2
2	Zinc oxide/graphene nanocomposite as efficient photoelectrode in dyeâ€sensitized solar cells: Recent advances and future outlook. International Journal of Energy Research, 2022, 46, 7082-7100.	2.2	10
3	Organic sensitization of graphene oxide and reduced graphene oxide thin films for photovoltaic applications. International Journal of Energy Research, 2021, 45, 9657-9666.	2.2	12
4	Graphene-Based Nanocomposites for Renewable Energy Application. , 2021, , 929-963.		0
5	Effect of potassium permanganate on morphological, structural and electro-optical properties of graphene oxide thin films. Arabian Journal of Chemistry, 2021, 14, 102953.	2.3	36
6	The viability of alternative and nontoxic chlorine containing compounds for thermal treatment of <scp>ultrathin CdTe</scp> (â‰≇.0 μm) films. International Journal of Energy Research, 2021, 45, 13771-1	.3 7 85.	3
7	Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects. Renewable and Sustainable Energy Reviews, 2021, 144, 110999.	8.2	67
8	Effect of anisotropic pores on the material properties of metakaolin geopolymer composites incorporated with corrugated fiberboard and rubber. Journal of Materials Research and Technology, 2021, 14, 822-834.	2.6	5
9	Titanium Dioxide Loaded Reduced Graphene Oxide Nanocomposite Film as Counter Electrodes for Dye-Sensitized Solar Cells. IOP Conference Series: Earth and Environmental Science, 2021, 945, 012051.	0.2	O
10	Hybrid Graphene Titanium Nanocomposites and Their Applications in Energy Storage Devices: a Review. Journal of Electronic Materials, 2020, 49, 1777-1786.	1.0	13
11	Hydrolytic cleavage of glycosidic bonds for cellulose nanoparticles (CNPs) production by BmimHSO4 ionic liquid catalyst. Thermochimica Acta, 2020, 684, 178484.	1.2	16
12	An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid. Energies, 2020, 13, 3299.	1.6	34
13	An Autonomous Home Energy Management System Using Dynamic Priority Strategy in Conventional Homes. Energies, 2020, 13, 3312.	1.6	8
14	Influence of Sputtering Temperature of TiO2 Deposited onto Reduced Graphene Oxide Nanosheet as Efficient Photoanodes in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 4852.	1.7	5
15	Development of graphene based nanocomposites towards medical and biological applications. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1189-1205.	1.9	33
16	Mechanism of Photoanodes for Dye-Sensitized and Perovskite Solar Cells. Handbook of Environmental Chemistry, 2020, , 25-44.	0.2	0
17	Influence of Temperature Reaction for the CdSe–TiO2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity. Materials, 2020, 13, 2533.	1.3	1
18	Heat transfer and fouling deposition investigation on the titanium coated heat exchanger surface. Powder Technology, 2020, 373, 671-680.	2.1	31

#	Article	IF	Citations
19	An investigation of the stirring duration effect on synthesized graphene oxide for dye-sensitized solar cells. PLoS ONE, 2020, 15, e0228322.	1.1	8
20	Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy. RSC Advances, 2020, 10, 12851-12863.	1.7	39
21	Effect of temperature on synthesis of cellulose nanoparticles via ionic liquid hydrolysis process. Journal of Molecular Liquids, 2020, 308, 113030.	2.3	24
22	An investigation on titanium doping in reduced graphene oxide by RF magnetron sputtering for dye-sensitized solar cells. Solar Energy, 2019, 188, 10-18.	2.9	13
23	High performance supercapattery with rGO/TiO2 nanocomposites anode and activated carbon cathode. Journal of Alloys and Compounds, 2019, 796, 13-24.	2.8	38
24	Reduced Graphene Oxide Decorated Tio2 for Improving Dye-Sensitized Solar Cells (DSSCs). Current Nanoscience, 2019, 15, 631-636.	0.7	10
25	Graphene-Based Nanocomposites for Renewable Energy Application. , 2019, , 1-36.		0
26	Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Advances in Polymer Technology, 2018, 37, 1712-1721.	0.8	37
27	Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 2018, 82, 103-125.	8.2	124
28	Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells. Rare Metals, 2018, 37, 919-928.	3.6	12
29	One-step hydrothermal synthesis of titanium dioxide decorated on reduced graphene oxide for dye-sensitised solar cells application. International Journal of Nanotechnology, 2018, 15, 78.	0.1	4
30	Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2017, 28, 3819-3836.	1.1	29
31	Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceramics International, 2017, 43, 625-633.	2.3	37
32	Facile Synthesis of High Quality Graphene Oxide from Graphite Flakes Using Improved Hummer's Technique. Journal of Nanoscience and Nanotechnology, 2015, 15, 6769-6773.	0.9	21
33	Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceramics International, 2015, 41, 5798-5806.	2.3	130
34	An Overview: Recent Development of Titanium Dioxide Loaded Graphene Nanocomposite Film for Solar Application. Current Organic Chemistry, 2015, 19, 1882-1895.	0.9	16
35	Precise Alignment of Individual Single-Walled Carbon Nanotube Using Dielectrophoresis Method for Development and Fabrication of pH Sensor. Journal of Nanomaterials, 2013, 2013, 1-7.	1.5	4
36	The alignment of carbon nano tube between Aluminum electrodes using AC dielectrophoresis method. , $2011, \ldots$		0

#	Article	IF	CITATIONS
37	The Effect of Chemical Solutions (Isopropyl Alcohol, Dichloromethane, Acetone and Triton X-100) on the Dispersion of Single-Walled Carbon Nanotubes. Advanced Materials Research, 0, 1109, 113-117.	0.3	5