
Kirill Kholin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox Trends in Terpyridine Nickel Complexes. Inorganic Chemistry, 2011, 50, 8630-8635.	4.0	69
2	Accessing perfluoroalkyl nickel(<scp>ii</scp>), (<scp>iii</scp>), and (<scp>iv</scp>) complexes bearing a readily attached [C ₄ F ₈] ligand. Dalton Transactions, 2015, 44, 19443-19446.	3.3	46
3	Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes. Carbohydrate Polymers, 2015, 134, 524-533.	10.2	46
4	Novel approach to metal-induced oxidative phosphorylation of aromatic compounds. Catalysis Today, 2017, 279, 133-141.	4.4	39
5	External oxidant-free cross-coupling: electrochemically induced aromatic C–H phosphonation of azoles with dialkyl- <i>H</i> -phosphonates under silver catalysis. Dalton Transactions, 2018, 47, 190-196.	3.3	38
6	Redox trends in cyclometalated palladium(<scp>ii</scp>) complexes. Dalton Transactions, 2017, 46, 165-177.	3.3	34
7	Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Materials Science and Engineering C, 2017, 76, 551-558.	7.3	32
8	lron-catalyzed electrochemical C–H perfluoroalkylation of arenes. Dalton Transactions, 2015, 44, 19674-19681.	3.3	31
9	Interfacial uploading of luminescent hexamolybdenum cluster units onto amino-decorated silica nanoparticles as new design of nanomaterial for cellular imaging and photodynamic therapy. Journal of Colloid and Interface Science, 2019, 538, 387-396.	9.4	31
10	One-stage synthesis of FcP(O)(OC ₂ H ₅) ₂ from ferrocene and α-hydroxyethylphosphonate. RSC Advances, 2016, 6, 42701-42707.	3.6	30
11	A Ni(<scp>iii</scp>) complex stabilized by silica nanoparticles as an efficient nanoheterogeneous catalyst for oxidative C–H fluoroalkylation. Dalton Transactions, 2016, 45, 11976-11982.	3.3	27
12	Electrooxidative CH/PH functionalization as a novel way to synthesize benzo[<i>b</i>]phosphole oxides mediated by catalytic amounts of silver acetate. New Journal of Chemistry, 2018, 42, 930-935.	2.8	27
13	Silica-supported silver nanoparticles as an efficient catalyst for aromatic C–H alkylation and fluoroalkylation. Dalton Transactions, 2018, 47, 9608-9616.	3.3	27
14	Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability. Colloids and Surfaces B: Biointerfaces, 2017, 149, 243-249.	5.0	26
15	Dual Visible and Near-Infrared Luminescent Silica Nanoparticles. Synthesis and Aggregation Stability. Journal of Physical Chemistry C, 2010, 114, 6350-6355.	3.1	23
16	One-pot embedding of iron oxides and Gd(III) complexes into silica nanoparticles—Morphology and aggregation effects on MRI dual contrasting ability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 60-67.	4.7	22
17	Mechanistic study of the [(dpp-bian)Re(CO)3Br] electrochemical reduction using in situ EPR spectroscopy and computational chemistry. Electrochimica Acta, 2018, 270, 526-534.	5.2	21
18	Electrochemistry of nitronyl and imino nitroxides. Russian Journal of Physical Chemistry A, 2009, 83, 1976-1980.	0.6	20

KIRILL KHOLIN

#	Article	IF	CITATIONS
19	Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/P-H Coupling Reactions. Topics in Catalysis, 2018, 61, 1949-1956.	2.8	18
20	Spin-adduct of the P4 ·â^' radical anion during the electrochemical reduction of white phosphorus. Russian Chemical Bulletin, 2010, 59, 466-468.	1.5	17
21	Novel water soluble cationic Au(I) complexes with cyclic PNNP ligand as building blocks for heterometallic supramolecular assemblies with anionic hexarhenium cluster units. Journal of Luminescence, 2018, 196, 485-491.	3.1	16
22	Electrochemistry of the sterically hindered imidazolidine zwitterion and its paramagnetic derivative. Journal of Electroanalytical Chemistry, 2008, 624, 69-72.	3.8	15
23	Oxygen reduction reaction catalyzed by nickel complexes based on thiophosphorylated calix[4]resorcinols and immobilized in the membrane electrode assembly of fuel cells. Dalton Transactions, 2016, 45, 16157-16161.	3.3	15
24	Synthesis, Properties, and Antimicrobial Activity of Pectin Complexes with Cobalt and Nickel. Chemistry of Natural Compounds, 2016, 52, 26-31.	0.8	15
25	Structure optimization for enhanced luminescent and paramagnetic properties of hydrophilic nanomaterial based on heterometallic Gd-Re complexes. Materials and Design, 2018, 146, 49-56.	7.0	15
26	A nickel-based pectin coordination polymer as an oxygen reduction reaction catalyst for proton-exchange membrane fuel cells. Inorganic Chemistry Frontiers, 2018, 5, 780-784.	6.0	15
27	Organometallic Polymer Electrolyte Membrane Fuel Cell Bisâ€Ligand Nickel(Ii) Complex of 1,5â€Diâ€ <i>P</i> â€Tolylâ€3,7â€Dipyridineâ€1,5,3,7â€Diazadiphosphacycloâ€Octane Catalyst. Energy Techno 1088-1095.	log y, &018	3, 615
28	Copper or Silver-Mediated Oxidative C(sp ²)–H/N–H Cross-Coupling of Phthalimide and Heterocyclic Arenes: Access to <i>N</i> -Arylphthalimides. Organometallics, 2019, 38, 3617-3628.	2.3	15
29	Cyclometalated Nickel Complexes as Key Intermediates in C(sp ²)–H Bond Functionalization: Synthesis, Catalysis, Electrochemical Properties, and DFT Calculations. Organometallics, 2019, 38, 1254-1263.	2.3	15
30	Cyclic voltammetry of nitronyl- and iminonitroxyls detected by electron spin resonance. Russian Journal of Physical Chemistry A, 2009, 83, 2163-2169.	0.6	14
31	Synthesis, structure, and magnetic properties of 2,2′-(buta-1,3-diyne-1,4-diyl)bis(4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide 1-oxyl). Polyhedron, 2011, 30, 3232-3237.	2.2	13
32	Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca ²⁺ in motoneurons. Nanoscale, 2019, 11, 16103-16113.	5.6	13
33	Silica Nanospheres Coated by Ultrasmall Ag0 Nanoparticles for Oxidative Catalytic Application. Colloids and Interface Science Communications, 2017, 21, 1-5.	4.1	12
34	ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. Materials Science and Engineering C, 2020, 117, 111305.	7.3	12
35	Silica nanoparticles with dual visible–NIR luminescence affected by silica confinement of Tb(III) and Yb(III) complexes for cellular imaging application. Journal of Materials Science, 2019, 54, 9140-9154.	3.7	11
36	Synthesis, structure, and electrochemical properties of 4,5-diaryl-1,2,3-triphosphaferrocenes and the first example of multi(phosphaferrocene). Dalton Transactions, 2020, 49, 17252-17262.	3.3	11

KIRILL KHOLIN

#	Article	lF	CITATIONS
37	Highly active Pd–Ni nanocatalysts supported on multicharged polymer matrix. Catalysis Science and Technology, 2017, 7, 5914-5919.	4.1	10
38	Selective C(sp ²)â€H Amination Catalyzed by Highâ€Valent Cobalt(III)/(IV)â€bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem, 2019, 11, 5615-5624.	3.7	10
39	Cyclic voltammetry of tris(2,2′-bipyridine)zinc(ii) diperchlorate detected by electron spin resonance. Russian Chemical Bulletin, 2013, 62, 1327-1331.	1.5	9
40	Spectroelectrochemistry: ESR of Paramagnetic Intermediates in the Electron Transfer Series [Cr(bpy)3]n (n=3+, 2+, 1+, 0, 1-). Electrochimica Acta, 2015, 182, 212-216.	5.2	9
41	Palladium Nanoparticles–Polypyrrole Composite as Effective Catalyst for Fluoroalkylation of Alkenes. Catalysis Letters, 2018, 148, 3119-3125.	2.6	9
42	Synthesis of Au(I) complex-based aqueous colloids for sensing of biothiols. Inorganica Chimica Acta, 2019, 485, 26-32.	2.4	9
43	Synthetic Tuning of Coll-Doped Silica Nanoarchitecture Towards Electrochemical Sensing Ability. Nanomaterials, 2020, 10, 1338.	4.1	9
44	Surface modification of silica nanoparticles by hexarhenium anionic cluster complexes for pH-sensing and staining of cell nuclei. Journal of Colloid and Interface Science, 2021, 594, 759-769.	9.4	9
45	Silica-Supported Assemblage of Cull Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. Coatings, 2022, 12, 97.	2.6	9
46	Electrooxidative phosphorylation of coumarins by bimetallic catalytic systems Ni(II)/Mn(II) or Co(II)/Mn(II). Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1660-1661.	1.6	7
47	Silica nanoparticles with Tb(III)-centered luminescence decorated by Ag0 as efficient cellular contrast agent with anticancer effect. Journal of Inorganic Biochemistry, 2018, 182, 170-176.	3.5	7
48	Silica-coated iron-oxide nanoparticles doped with Gd(III) complexes as potential double contrast agents for magnetic resonance imaging at different field strengths. Journal of Chemical Sciences, 2018, 130, 1.	1.5	7
49	A Nickelâ€Based Pectin Metalâ€Organic Framework as a Hydrogen Oxidation Reaction Catalyst for Protonâ€Exchangeâ€Membrane Fuel Cells. ChemistrySelect, 2019, 4, 4731-4734.	1.5	7
50	Synthesis, properties, and antianemic activity of new metal complexes of sodium pectinate with iron and calcium. Russian Chemical Bulletin, 2019, 68, 48-54.	1.5	7
51	Polymer and supramolecular nanocontainers based on carboxylate derivatives of resorcinarenes for binding of substrates and design of composites for catalysis. Russian Chemical Bulletin, 2020, 69, 351-359.	1.5	7
52	Tailoring of silica nanoarchitecture to optimize Cu(2â^'x)S based image-guided chemodynamic therapy agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126996.	4.7	7
53	Anticancer potential of hexamolybdenum clusters [{Mo6I8}(L)6]2â~' (LÂ=ÂCF3COOâ~' and C6F5COOâ~') incorporated into different nanoparticulate forms. Journal of Molecular Liquids, 2021, 343, 117601.	4.9	7
54	Selective fluorination of pyridine and its derivatives in the presence of high-oxidation-state transition metals. Russian Chemical Bulletin, 2016, 65, 1798-1804.	1.5	6

Kirill Kholin

#	Article	IF	CITATIONS
55	Structure impact on photodynamic therapy and cellular contrasting functions of colloids constructed from dimeric Au(I) complex and hexamolybdenum clusters. Materials Science and Engineering C, 2021, 128, 112355.	7.3	6
56	Pd II (Pâ€₽) Derivatives of oâ€Quinone Annulated with Dithiete Cycle: Electrochemical Properties and Coordination Regioisomerism. European Journal of Inorganic Chemistry, 2020, 2020, 4350-4357.	2.0	6
57	"Proton sponge―effect and apoptotic cell death mechanism of Ag -Re6 nanocrystallites derived from the assembly of [{Re6S8}(OH)6–(H2O)]4 with Ag+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129312.	4.7	6
58	Nano-architecture of silica nanoparticles as a tool to tune both electrochemical and catalytic behavior of Nill@SiO2. RSC Advances, 2019, 9, 22627-22635.	3.6	5
59	[{Re ₆] _{Q₈}(SO₃)₆]^{10–} (Q = S or Se): Facile Synthesis and Properties of the Most Highly Charged Octahedral Cluster Complexes and High Magnetic Relaxivity of Their Colloids with Gd³⁺ Ions. Inorganic Chemistry, 2019, 58, 15889-15897.}	4.0	5
60	Photocatalytic properties of hybrid materials based on a multicharged polymer matrix with encored TiO ₂ and noble metal (Pt, Pd or Au) nanoparticles. New Journal of Chemistry, 2020, 44, 7169-7174.	2.8	5
61	Isolation and Structural And Chemical Analysis of Pectinic Polysaccharides from Amaranthus cruentus. Chemistry of Natural Compounds, 2014, 50, 54-59.	0.8	4
62	New metal complexes of citrus pectin with magnesium ions: synthesis, properties, and immunomodulatory activity. Russian Chemical Bulletin, 2021, 70, 433-443.	1.5	4
63	T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes. Journal of Chemical Sciences, 2021, 133, 1.	1.5	4
64	Water dispersible supramolecular assemblies built from luminescent hexarhenium clusters and silver(I) complex with pyridine-2-ylphospholane for sensorics. Journal of Molecular Liquids, 2020, 305, 112853.	4.9	3
65	Enhancement of pectin extraction from Daikon in a rotary pulse apparatus. Doklady Chemistry, 2011, 441, 343-346.	0.9	2
66	Data of characterization of sodium pectate complexes with iron and manganese. Data in Brief, 2021, 39, 107594.	1.0	2
67	Synthesis, Physicochemical Properties and Antiâ€Fatigue Effect of Magnesium, Zinc and Chromium Polygalacturonate Based Composition. ChemistrySelect, 2019, 4, 4331-4338.	1.5	1
68	A Water-Soluble Sodium Pectate Complex with Copper as an Electrochemical Catalyst for Carbon Dioxide Reduction. Molecules, 2021, 26, 5524.	3.8	1
69	Synthesis and photophysical properties of silica nanoparticles based on europium(iii) complexes. Russian Chemical Bulletin, 2011, 60, 2222-2226.	1.5	0
70	EPR-spectroelectrochemistry of nickel–organic complexes—small molecules activators. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1613-1614.	1.6	0
71	Catalytic properties of nanostructured nickel-containing pectin biopolymers on a glassy carbon surface. Journal of Physics: Conference Series, 2020, 1695, 012050.	0.4	0