
Magdalene K Montgomery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402708/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nature Communications, 2022, 13, 1259.	5.8	11
2	Proteomic analysis reveals exercise training induced remodelling of hepatokine secretion and uncovers syndecan-4 as a regulator of hepatic lipid metabolism. Molecular Metabolism, 2022, 60, 101491.	3.0	12
3	Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control. Journal of Lipid Research, 2021, 62, 100016.	2.0	23
4	Circulating cathepsin S improves glycaemic control in mice. Journal of Endocrinology, 2021, 248, 167-179.	1.2	6
5	Ectodysplasin A Is Increased inÂNon-Alcoholic Fatty Liver Disease, But Is Not Associated With Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 642432.	1.5	13
6	EGFRvIII Promotes Cell Survival during Endoplasmic Reticulum Stress through a Reticulocalbin 1-Dependent Mechanism. Cancers, 2021, 13, 1198.	1.7	7
7	Western Diet Induced Remodelling of the Tongue Proteome. Proteomes, 2021, 9, 22.	1.7	5
8	Hexosaminidase A (HEXA) regulates hepatic sphingolipid and lipoprotein metabolism in mice. FASEB Journal, 2021, 35, e22046.	0.2	8
9	SMOC1 is a glucose-responsive hepatokine and therapeutic target for glycemic control. Science Translational Medicine, 2020, 12, .	5.8	29
10	Epicardial Adipose Tissue Accumulation Confers Atrial Conduction Abnormality. Journal of the American College of Cardiology, 2020, 76, 1197-1211.	1.2	103
11	Molecular regulators of lipid metabolism in the intestine – Underestimated therapeutic targets for obesity?. Biochemical Pharmacology, 2020, 178, 114091.	2.0	6
12	Inter-organelle Communication in the Pathogenesis of Mitochondrial Dysfunction and Insulin Resistance. Current Diabetes Reports, 2020, 20, 20.	1.7	20
13	Regulation of mitochondrial metabolism in murine skeletal muscle by the mediumâ€chain fatty acid receptor Gpr84. FASEB Journal, 2019, 33, 12264-12276.	0.2	36
14	The Liver as an Endocrine Organ—Linking NAFLD and Insulin Resistance. Endocrine Reviews, 2019, 40, 1367-1393.	8.9	341
15	The role of Ap2a2 in PPARαâ€mediated regulation of lipolysis in adipose tissue. FASEB Journal, 2019, 33, 13267-13279.	0.2	15
16	Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe?. Biology, 2019, 8, 33.	1.3	28
17	Choline administration attenuates aspects of the dystrophic pathology in mdx mice. Clinical Nutrition Experimental, 2019, 24, 83-91.	2.0	7
18	Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 2019, 11	5.8	210

#	Article	IF	CITATIONS
19	Impact of Lipotoxicity on Tissue "Cross Talk―and Metabolic Regulation. Physiology, 2019, 34, 134-149.	1.6	42
20	Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nature Communications, 2019, 10, 5291.	5.8	37
21	Perilipin 5 Deletion in Hepatocytes Remodels Lipid Metabolism and Causes Hepatic Insulin Resistance in Mice. Diabetes, 2019, 68, 543-555.	0.3	54
22	Perilipin 5 Deletion Unmasks an Endoplasmic Reticulum Stress–Fibroblast Growth Factor 21 Axis in Skeletal Muscle. Diabetes, 2018, 67, 594-606.	0.3	36
23	Protein hypoacylation induced by Sirt5 overexpression has minimal metabolic effect in mice. Biochemical and Biophysical Research Communications, 2018, 503, 1349-1355.	1.0	8
24	Disrupted sphingolipid metabolism following acute clozapine and olanzapine administration. Journal of Biomedical Science, 2018, 25, 40.	2.6	22
25	A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nature Communications, 2018, 9, 3165.	5.8	93
26	Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains. Scientific Reports, 2017, 7, 13914.	1.6	26
27	Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E128-E137.	1.8	15
28	Disparate metabolic response to fructose feeding between different mouse strains. Scientific Reports, 2016, 5, 18474.	1.6	35
29	The role of mitochondrial sirtuins in health and disease. Free Radical Biology and Medicine, 2016, 100, 164-174.	1.3	137
30	Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1828-1839.	1.2	66
31	Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections, 2015, 4, R1-R15.	0.8	393
32	Inhibitor of differentiation proteins protect against oxidative stress by regulating the antioxidant–mitochondrial response in mouse beta cells. Diabetologia, 2015, 58, 758-770.	2.9	37
33	Glucagon phosphorylates serine 552 of î² -catenin leading to increased expression of cyclin D1 and c-Myc in the isolated rat liver. Archives of Physiology and Biochemistry, 2015, 121, 88-96.	1.0	13
34	PPARα-independent actions of omega-3 PUFAs contribute to their beneficial effects on adiposity and glucose homeostasis. Scientific Reports, 2014, 4, 5538.	1.6	15
35	Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell, 2013, 155, 1624-1638.	13.5	1,134
36	Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia, 2013, 56, 1129-1139.	2.9	327

#	Article	IF	CITATIONS
37	Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. Journal of Lipid Research, 2013, 54, 3322-3333.	2.0	93
38	PS - 46. SIRT3 overexpression in rat skeletal muscle does not alleviate high-fat diet-induced insulin resistance. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 130-130.	0.0	0
39	Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production. Experimental Gerontology, 2012, 47, 203-210.	1.2	42
40	Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage. Experimental Gerontology, 2012, 47, 211-222.	1.2	37
41	Metabolic rate and membrane fatty acid composition in birds: a comparison between long-living parrots and short-living fowl. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182, 127-137.	0.7	17
42	The Long Life of Birds: The Rat-Pigeon Comparison Revisited. PLoS ONE, 2011, 6, e24138.	1.1	49
43	An ancient look at UCP1. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 637-641.	0.5	57
44	The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad <i>Bufo marinus</i> . Journal of Experimental Biology, 2008, 211, 1911-1918.	0.8	58