Pan-Yong Kuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402680/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	EPR Investigation on Electron Transfer of 2D/3D g ₃ N ₄ /ZnO Sâ€6cheme Heterojunction for Enhanced CO ₂ Photoreduction. Advanced Sustainable Systems, 2022, 6, 2100264.	2.7	112
2	Engineering 2D NiO/Ni3S2 heterointerface electrocatalyst for highly efficient hydrogen production coupled with benzyl alcohol oxidation. Chemical Engineering Journal, 2022, 431, 134137.	6.6	30
3	New progress on MXenes-based nanocomposite photocatalysts. Materials Reports Energy, 2022, 2, 100081.	1.7	7
4	Pt–Ru Dimer Electrocatalyst with Electron Redistribution for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 5540-5548.	5.5	58
5	Hollow carbon sphere-supported Pt/CoO hybrid with excellent hydrogen evolution activity and stability in acidic environment. Applied Catalysis B: Environmental, 2022, 314, 121503.	10.8	34
6	Introductory chapter: Fundamentals of photocatalysis and electrocatalysis. , 2022, , 1-30.		0
7	Graphene oxide-based materials in electrocatalysis. , 2022, , 189-238.		0
8	Pt Single Atoms Supported on Nâ€Đoped Mesoporous Hollow Carbon Spheres with Enhanced Electrocatalytic H ₂ â€Evolution Activity. Advanced Materials, 2021, 33, e2008599.	11.1	314
9	Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nature Communications, 2021, 12, 4936.	5.8	159
10	Hierarchical porous nickel supported NiFeOxHy nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Applied Catalysis B: Environmental, 2021, 299, 120668.	10.8	62
11	In Situ Transformation of Prussianâ€Blue Analogueâ€Derived Bimetallic Carbide Nanocubes by Water Oxidation: Applications for Energy Storage and Conversion. Chemistry - A European Journal, 2020, 26, 4052-4062.	1.7	23
12	Amorphous WO ₃ induced lattice distortion for a low-cost and high-efficient electrocatalyst for overall water splitting in acid. Sustainable Energy and Fuels, 2020, 4, 1712-1722.	2.5	14
13	Curved Surface Boosts Electrochemical CO ₂ Reduction to Formate via Bismuth Nanotubes in a Wide Potential Window. ACS Catalysis, 2020, 10, 358-364.	5.5	206
14	MXene-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 18-44.	5.6	269
15	3D Grapheneâ€Based H ₂ â€Production Photocatalyst and Electrocatalyst. Advanced Energy Materials, 2020, 10, 1903802.	10.2	199
16	0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. Journal of Catalysis, 2019, 375, 8-20.	3.1	150
17	0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 15-25.	10.8	243
18	Ni <i>_x</i> S <i>_y</i> Nanowalls/Nitrogenâ€Đoped Graphene Foam Is an Efficient Trifunctional Catalyst for Unassisted Artificial Photosynthesis. Advanced Functional Materials, 2018, 28, 1706917.	7.8	72

PAN-YONG KUANG

#	Article	IF	CITATIONS
19	ZnO hierarchical microsphere for enhanced photocatalytic activity. Journal of Alloys and Compounds, 2018, 741, 622-632.	2.8	145
20	Graphdiyne: a superior carbon additive to boost the activity of water oxidation catalysts. Nanoscale Horizons, 2018, 3, 317-326.	4.1	116
21	Metal–Organic Framework-Derived Nickel–Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 22311-22319.	4.0	306
22	Organic dye removal from aqueous solutions by hierarchical calcined Ni-Fe layered double hydroxide: Isotherm, kinetic and mechanism studies. Journal of Colloid and Interface Science, 2017, 496, 158-166.	5.0	119
23	Plasmon-Enhanced Photoelectrochemical Water Splitting on Gold Nanoparticle Decorated ZnO/CdS Nanotube Arrays. ACS Sustainable Chemistry and Engineering, 2017, 5, 4249-4257.	3.2	254
24	Facile Construction of Dual p–n Junctions in CdS/Cu ₂ 0/ZnO Photoanode with Enhanced Charge Carrier Separation and Transfer Ability. ACS Omega, 2017, 2, 852-863.	1.6	62
25	In Situ Fabrication of Ni–Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide pH Range. ACS Catalysis, 2017, 7, 6179-6187.	5.5	287
26	Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Applied Catalysis B: Environmental, 2017, 218, 570-580.	10.8	171
27	Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small, 2016, 12, 6735-6744.	5.2	172
28	BiOBr nanoplate-wrapped ZnO nanorod arrays for high performance photoelectrocatalytic application. RSC Advances, 2016, 6, 16122-16130.	1.7	60
29	Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate–Zinc Oxide Nanorod p–n Heterojunction. Chemistry - A European Journal, 2015, 21, 15360-15368.	1.7	139
30	Polypyrrole Shell@3Dâ€Ni Metal Core Structured Electrodes for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2015, 21, 4614-4621.	1.7	82
31	One-pot synthesis of heterostructured Bi ₂ S ₃ /BiOBr microspheres with highly efficient visible light photocatalytic performance. RSC Advances, 2015, 5, 16239-16249.	1.7	119
32	Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications. ACS Applied Materials & Interfaces, 2015, 7, 16387-16394.	4.0	169
33	Hierarchical NiCo ₂ O ₄ nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2015, 3, 19314-19321.	5.2	182
34	Anion-assisted one-pot synthesis of 1D magnetic α- and β-MnO ₂ nanostructures for recyclable water treatment application. New Journal of Chemistry, 2015, 39, 2497-2505.	1.4	41
35	Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties. Ceramics International, 2015, 41, 8670-8679.	2.3	20
36	g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance. Applied Surface Science, 2015, 358, 296-303.	3.1	154