Vladimiros G Papangelakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402563/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid forward osmosis - freeze concentration: A promising future in the desalination of effluents in cold regions. Journal of Water Process Engineering, 2022, 47, 102711.	5.6	6
2	Chelation-Assisted Ion-Exchange Leaching of Rare Earths from Clay Minerals. Metals, 2021, 11, 1265.	2.3	14
3	Correction to: Thermodynamic and experimental analysis of Ni-Co-Mn carbonate precursor synthesis for Li-rich cathode materials. Ionics, 2020, 26, 4213-4213.	2.4	1
4	Thermodynamic and experimental analysis of Ni-Co-Mn carbonate precursor synthesis for Li-rich cathode materials. Ionics, 2020, 26, 2747-2755.	2.4	4
5	Complete Genome Sequence of Acidithiobacillus ferridurans JAGS, Isolated from Acidic Mine Drainage. Microbiology Resource Announcements, 2020, 9, .	0.6	4
6	Temperature and Pressure Effects on the Separation Efficiency and Desorption Kinetics in the NH ₃ –CO ₂ –H ₂ O System. Industrial & Engineering Chemistry Research, 2019, 58, 12247-12252.	3.7	10
7	Water recovery from inorganic solutions via natural freezing and melting. Journal of Water Process Engineering, 2019, 31, 100787.	5.6	11
8	Redox potential measurement during pressure oxidation (POX) of a refractory gold ore. Canadian Metallurgical Quarterly, 2018, 57, 382-389.	1.2	16
9	Modeling of density and electrical conductivity of aqueous carbonated trimethylamine (TMA–CO2–H2O) solutions at 20°C. Monatshefte Für Chemie, 2018, 149, 453-460.	1.8	4
10	Temperature and Pressure Effects on the Separation Efficiency and Desorption Kinetics in the TMA-CO2-H2O System. Industrial & Engineering Chemistry Research, 2018, 57, 14767-14773.	3.7	4
11	Energy requirements in the separation-regeneration step in forward osmosis using TMA–CO2–H2O as the draw solution. Chemical Engineering Research and Design, 2018, 140, 166-174.	5.6	22
12	Extraction of Water from Contaminated Effluents by Forward Osmosis. Minerals, Metals and Materials Series, 2018, , 1893-1902.	0.4	2
13	Forward Osmosis and Freeze Crystallization as Low Energy Water Recovery Processes for a Water-Sustainable Industry. Environmental Processes, 2018, 5, 59-75.	3.5	10
14	Chemical Modeling of the TMA–CO2–H2O System: A Draw Solution in Forward Osmosis for Process Water Recovery. Journal of Chemical & Engineering Data, 2017, 62, 1214-1222.	1.9	10
15	Application of a selective dissolution protocol to quantify the terminal dissolution extents of pyrrhotite and pentlandite from pyrrhotite tailings. International Journal of Mineral Processing, 2017, 158, 27-34.	2.6	4
16	Leaching characteristics of nickeliferous pyrrhotite tailings from the Sudbury, Ontario area. Canadian Metallurgical Quarterly, 2017, 56, 372-381.	1.2	11
17	Redox potential measurements in the H 2 SO 4 -FeSO 4 -Fe 2 (SO 4) 3 -H 2 O system at high temperature using an Ir electrode. Journal of Electroanalytical Chemistry, 2017, 799, 399-405.	3.8	4
18	Why amorphous FeO-SiO2 slags do not acid-leach at high temperatures. Journal of Hazardous Materials, 2017, 321, 737-744.	12.4	24

#	Article	IF	CITATIONS
19	Why amorphous FeO-SiO2 slags do not acid-leach at high temperatures. , 2017, 321, 737-737.		1
20	Effects of thermal pre-treatment and ore dryness on the recovery of lanthanides from ion-adsorption clays. Hydrometallurgy, 2015, 158, 180-185.	4.3	4
21	Strategies for calcium sulphate scale control in hydrometallurgical processes at 80°C. Hydrometallurgy, 2015, 157, 133-139.	4.3	13
22	Ferric Sulfate Leaching of Pyrrhotite Tailings between 30 to 55 °C. Minerals (Basel, Switzerland), 2015, 5, 801-814.	2.0	7
23	Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy, 2013, 131-132, 158-166.	4.3	155
24	Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy, 2012, 117-118, 71-78.	4.3	243
25	Co-treatment of converter slag and pyrrhotite tailings via high pressure oxidative leaching. Journal of Hazardous Materials, 2011, 194, 399-406.	12.4	28
26	Mechanism and kinetics of gypsum–anhydrite transformation in aqueous electrolyte solutions. Hydrometallurgy, 2011, 108, 122-129.	4.3	69
27	High pressure oxidative acid leaching of nickel smelter slag: Characterization of feed and residue. Hydrometallurgy, 2009, 97, 185-193.	4.3	75
28	Kieserite Solubility in the Aqueous FeCl ₃ + MgCl ₂ + HCl System between (338) Tj ETQd	q0.0.0 rgB ⁻ 1.9	T /Overlock 1
29	High-Temperature Conductivity Measurements of Concentrated NaClâ^'H2SO4â^'H2O Solutions up to 250 °C. Industrial & Engineering Chemistry Research, 2009, 48, 2781-2785.	3.7	5
30	Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching. Journal of Hazardous Materials, 2008, 152, 607-615.	12.4	79
31	Electrical Conductivity of Concentrated Al2(SO4)3â^'MgSO4â^'H2SO4 Aqueous Solutions up to 250 °C. Industrial & Engineering Chemistry Research, 2007, 46, 1598-1604.	3.7	4
32	Optimum reactor configuration for prevention of gypsum scaling during continuous sulphuric acid neutralization. Hydrometallurgy, 2007, 89, 269-278.	4.3	8
33	Electrical Conductivity of Concentrated MgSO4â^'H2SO4 Solutions up to 250 °C. Industrial & Engineering Chemistry Research, 2006, 45, 4757-4763.	3.7	10
34	Performance of Three Chemical Models on the High-Temperature Aqueous Al2(SO4)3â^'MgSO4â^'H2SO4â^'H2O System. Industrial & Engineering Chemistry Research, 2005, 44, 2931-2941.	3.7	23
35	The ion-association-interaction approach as applied to aqueous H2SO4-Al2(SO4)3-MgSO4 solutions at 250 ŰC. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1998, 29, 1021-1030.	2.1	25
36	Mathematical modelling of the transient behaviour of cstrs with reactive particulates: Part 1 — The population balance framework. Canadian Journal of Chemical Engineering, 1996, 74, 353-362.	1.7	10

#	Article	IF	CITATIONS
37	Mathematical modelling of the transient behaviour of cstrs with reactive particulates: Part 2 — Application to pyrite pressure oxidation. Canadian Journal of Chemical Engineering, 1996, 74, 363-371.	1.7	5
38	Hydrogen ion activities and species distribution in mixed metal sulfate aqueous systems. AICHE Journal, 1995, 41, 171-184.	3.6	39