Xavier Ramis Juan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402347/publications.pdf

Version: 2024-02-01

200 papers

5,537 citations

71102 41 h-index 59 g-index

202 all docs $\begin{array}{c} 202 \\ \\ \text{docs citations} \end{array}$

times ranked

202

3577 citing authors

#	Article	IF	CITATIONS
1	Synthesis and characterization of new bio-based poly(acylhydrazone) vanillin vitrimers. Polymer Chemistry, 2022, 13, 1510-1519.	3.9	15
2	Novel hybrid organic/inorganic poly(thiourethane) covalent adaptable networks. European Polymer Journal, 2022, 174, 111337.	5.4	8
3	Epoxy Doped, Nanoâ€scale Phaseâ€separated Polyâ€Acrylates with Potential in 3D Printing. Macromolecular Materials and Engineering, 2021, 306, 2000558.	3.6	2
4	Study Analysis of Thermal, Dielectric, and Functional Characteristics of an Ethylene Polyethylene Diene Monomer Blended with End-of-Life Tire Microparticles Amounts. Polymers, 2021, 13, 509.	4.5	6
5	Dual-cured thermosets from glycydil methacrylate obtained by epoxy-amine reaction and methacrylate homopolymerization. Reactive and Functional Polymers, 2021, 159, 104822.	4.1	15
6	Actuator Behaviour of Tailored Poly(thiourethane) Shape Memory Thermosets. Polymers, 2021, 13, 1571.	4.5	4
7	Curing kinetics of dually-processed acrylate-epoxy 3D printing resins. Thermochimica Acta, 2021, 701, 178963.	2.7	6
8	Cost-Effectively 3D-Printed Rigid and Versatile Interpenetrating Polymer Networks. Materials, 2021, 14, 4544.	2.9	4
9	Sequential photo-thermal curing of (meth)acrylate-epoxy thiol formulations. Polymer, 2021, 230, 124073.	3.8	4
10	Enhancement of 3D-Printable Materials by Dual-Curing Procedures. Materials, 2021, 14, 107.	2.9	15
11	A new class of vitrimers based on aliphatic poly(thiourethane) networks with shape memory and permanent shape reconfiguration. European Polymer Journal, 2020, 122, 109361.	5.4	53
12	New Epoxy Thermosets Derived from Clove Oil Prepared by Epoxy-Amine Curing. Polymers, 2020, 12, 44.	4.5	19
13	Curing kinetics of acrylate-based and 3D printable IPNs. Thermochimica Acta, 2020, 692, 178754.	2.7	8
14	Recyclable Organocatalyzed Poly(Thiourethane) Covalent Adaptable Networks. Polymers, 2020, 12, 2913.	4.5	21
15	The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers, 2020, 12, 1084.	4.5	24
16	Recyclable poly(thiourethane) vitrimers with high Tg. Influence of the isocyanate structure. Reactive and Functional Polymers, 2020, 151, 104574.	4.1	43
17	Acetoacetate Based Thermosets Prepared by Dual-Michael Addition Reactions. Polymers, 2019, 11, 1408.	4.5	5
18	Fully renewable thermosets based on bis-eugenol prepared by thiol-click chemistry. Reactive and Functional Polymers, 2019, 136, 153-166.	4.1	29

#	Article	IF	CITATIONS
19	Kinetics analysis and simulation of sequential epoxy dual-curing systems with independent thermal activation. Thermochimica Acta, 2019, 673, 158-168.	2.7	9
20	Time-temperature-transformation (TTT) diagram of dual-curable epoxy thermosets obtained via two sequential epoxy-amine condensations. Thermochimica Acta, 2019, 678, 178305.	2.7	6
21	Tailor-made thermosets obtained by sequential dual-curing combining isocyanate-thiol and epoxy-thiol click reactions. Polymer, 2019, 174, 200-209.	3.8	16
22	Hard epoxy thermosets obtained via two sequential epoxy-amine condensations. European Polymer Journal, 2019, 116, 222-231.	5.4	15
23	Sequential heat release: an innovative approach for the control of curing profiles during composite processing based on dualâ€curing systems. Polymer International, 2019, 68, 527-545.	3.1	11
24	Preparation of poly(thiourethane) thermosets by controlled thiol-isocyanate click reaction using a latent organocatalyst. Reactive and Functional Polymers, 2019, 134, 174-182.	4.1	24
25	New allyl-functional catalytic comonomers for sequential thiol-Michael and radical thiol-ene reactions. Polymer, 2018, 138, 369-377.	3.8	12
26	Preparation of new biobased coatings from a triglycidyl eugenol derivative through thiol-epoxy click reaction. Progress in Organic Coatings, 2018, 114, 259-267.	3.9	46
27	Curing kinetics and characterization of dual-curable thiol-acrylate-epoxy thermosets with latent reactivity. Reactive and Functional Polymers, 2018, 122, 60-67.	4.1	20
28	Sequential dual curing by selective Michael addition and free radical polymerization of acetoacetate-acrylate-methacrylate mixtures. European Polymer Journal, 2018, 98, 39-46.	5.4	21
29	Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation. Molecules, 2018, 23, 2421.	3.8	51
30	State of the Art in Dual-Curing Acrylate Systems. Polymers, 2018, 10, 178.	4.5	81
31	Preparation and characterization of dual-curable off-stoichiometric amine-epoxy thermosets with latent reactivity. Polymer, 2018, 146, 42-52.	3.8	33
32	Time-temperature-transformation (TTT) diagram of a dual-curable off-stoichiometric epoxy-amine system with latent reactivity. Thermochimica Acta, 2018, 666, 124-134.	2.7	12
33	Thermoconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices. Polymers, 2018, 10, 277.	4.5	28
34	Thermal curing of an epoxy-anhydride system modified with hyperbranched poly(ethylene imine)s with different terminal groups. Journal of Thermal Analysis and Calorimetry, 2017, 127, 645-654.	3.6	18
35	Novel thermal curing of cycloaliphatic resins by thiol-epoxy click process with several multifunctional thiols. Polymer International, 2017, 66, 1697-1707.	3.1	30
36	Sequential curing of thiol-acetoacetate-acrylate thermosets by latent Michael addition reactions. Polymer, 2017, 113, 193-199.	3.8	23

#	Article	IF	Citations
37	Latent curing of epoxy-thiol thermosets. Polymer, 2017, 116, 191-203.	3.8	51
38	Fluorescent thiol-epoxy thermosets obtained from diglycidylether of bisphenol A and carbazole based diepoxy monomer. Reactive and Functional Polymers, 2017, 116, 107-113.	4.1	5
39	Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polymer Chemistry, 2017, 8, 5934-5947.	3.9	64
40	New BN-epoxy composites obtained by thermal latent cationic curing with enhanced thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2017, 103, 35-47.	7.6	38
41	New bio-based materials obtained by thiol-ene/thiol-epoxy dual curing click procedures from eugenol derivates. European Polymer Journal, 2017, 93, 530-544.	5.4	49
42	Improved epoxy thermosets by the use of poly(ethyleneimine) derivatives. Physical Sciences Reviews, $2017, 2, .$	0.8	4
43	Epoxy Sol-Gel Hybrid Thermosets. Coatings, 2016, 6, 8.	2.6	49
44	Mechanical characterization of sol–gel epoxy-silylated hyperbranched poly(ethyleneimine) coatings by means of Depth Sensing Indentation methods. Progress in Organic Coatings, 2016, 92, 16-22.	3.9	10
45	Thiol-yne/thiol-epoxy hybrid crosslinked materials based on propargyl modified hyperbranched poly(ethyleneimine) and diglycidylether of bisphenol A resins. RSC Advances, 2016, 6, 61576-61584.	3.6	13
46	Sequential curing of amine-acrylate-methacrylate mixtures based on selective aza-Michael addition followed by radical photopolymerization. European Polymer Journal, 2016, 84, 256-267.	5.4	27
47	Synthesis of 1,2,3-triazole functionalized hyperbranched poly(ethyleneimine) and its use as multifunctional anionic macroinitiator for diglycidyl ether of bisphenol A curing. European Polymer Journal, 2016, 85, 390-400.	5.4	2
48	Multifunctional allyl-terminated hyperbranched poly(ethyleneimine) as component of new thiol–ene/thiol–epoxy materials. Reactive and Functional Polymers, 2016, 99, 17-25.	4.1	24
49	Thermomechanical Properties and Shapeâ€Memory Behavior of Bisphenol A Diacrylateâ€Based Shapeâ€Memory Polymers. Macromolecular Chemistry and Physics, 2016, 217, 39-50.	2.2	10
50	Sequential curing of off-stoichiometric thiol–epoxy thermosets with a custom-tailored structure. Polymer Chemistry, 2016, 7, 2280-2290.	3.9	96
51	Hybrid epoxy networks from ethoxysilyl-modified hyperbranched poly(ethyleneimine) and inorganic reactive precursors. European Polymer Journal, 2015, 70, 18-27.	5.4	8
52	Structural analysis of the curing of epoxy thermosets crosslinked with hyperbranched poly(ethyleneimine)s. European Polymer Journal, 2015, 70, 286-305.	5.4	26
53	Enhancement in the Glass Transition Temperature in Latent Thiol-Epoxy Click Cured Thermosets. Polymers, 2015, 7, 680-694.	4.5	36
54	Photocuring and thermal post-curing of a cycloaliphatic epoxide resin with a trithiol and a vinyl epoxy compound. Journal of Thermal Analysis and Calorimetry, 2015, 121, 389-395.	3.6	8

#	Article	IF	CITATIONS
55	New anhydride/epoxy thermosets based on diglycidyl ether of bisphenol A and 10-undecenoyl modified poly(ethyleneimine) with improved impact resistance. Progress in Organic Coatings, 2015, 85, 52-59.	3.9	18
56	Environmentally-friendly processing of thermosets by two-stage sequential aza-Michael addition and free-radical polymerization of amine–acrylate mixtures. Polymer Chemistry, 2015, 6, 6987-6997.	3.9	79
57	Preparation of click thiol-ene/thiol-epoxy thermosets by controlled photo/thermal dual curing sequence. RSC Advances, 2015, 5, 101623-101633.	3.6	47
58	Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine) cores of different molecular weight and poly(Îμ–caprolactone) arms. EXPRESS Polymer Letters, 2015, 9, 809-823.	2.1	14
59	Electrical application of polyamide reinforced with old tire rubber (ground tire rubber). Journal of Thermoplastic Composite Materials, 2014, 27, 1209-1231.	4.2	10
60	A Versatile Thiolâ€ene/ <scp>S</scp> ol– <scp>G</scp> el Twoâ€Stage Curing Process Based on a Hyperbranched Polyester with Different Degrees of 10â€ <scp>U</scp> ndecenoyl Modification. Macromolecular Materials and Engineering, 2014, 299, 495-503.	3.6	5
61	From curing kinetics to network structure: A novel approach to the modeling of the network buildup of epoxy–anhydride thermosets. Journal of Polymer Science Part A, 2014, 52, 61-75.	2.3	48
62	New Epoxy-Anhydride Thermosets Modified with Multiarm Stars with Hyperbranched Polyester Cores and Poly(Iµ-caprolactone) Arms. Polymer-Plastics Technology and Engineering, 2014, 53, 645-654.	1.9	8
63	Comparative analysis of stochastic network build-up methods for the curing of epoxy–anhydride thermosets. European Polymer Journal, 2014, 53, 22-36.	5.4	7
64	Highly exfoliated nanostructure in trifunctional epoxy/clay nanocomposites using boron trifluoride as initiator. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
65	Effect of hydroxyl ended and end-capped multiarm star polymers on the curing process and mechanical characteristics of epoxy/anhydride thermosets. Progress in Organic Coatings, 2014, 77, 1288-1298.	3.9	20
66	Photocuring of cycloaliphatic epoxy formulations using polyesters with multiarm star topology as additives. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
67	Cure kinetics modeling and thermomechanical properties of cycloaliphatic epoxy-anhydride thermosets modified with hyperstar polymers. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1227-1242.	2.1	20
68	New catalysts for diglycidyl ether of bisphenol A curing based on thiol–epoxy click reaction. European Polymer Journal, 2014, 59, 377-386.	5.4	66
69	Novel epoxy-silica hybrid coatings by using ethoxysilyl-modified hyperbranched poly(ethyleneimine) with improved scratch resistance. Polymer, 2014, 55, 5028-5035.	3.8	31
70	New epoxy thermosets modified with amphiphilic multiarm star polymers as toughness enhancer. Reactive and Functional Polymers, 2014, 83, 132-143.	4.1	13
71	Dielectric, Thermal, and Mechanical Properties of Acrylonitrile Butadiene Styrene Reinforced with Used Tires. Advances in Polymer Technology, 2013, 32, .	1.7	10
72	Thermal curing and photocuring of a DGEBA modified with multiarm star poly(glycidol)-b-poly(ε-caprolactone) polymers of different arm lengths. Journal of Thermal Analysis and Calorimetry, 2013, 114, 409-416.	3.6	7

#	Article	IF	CITATIONS
73	Enhancement of the impact strength of cationically cured cycloaliphatic diepoxide by adding hyperbranched poly(glycidol) partially modified with 10-undecenoyl chains. European Polymer Journal, 2013, 49, 1610-1620.	5.4	13
74	New epoxy thermosets modified with multiarm star poly(lactide) with poly(ethyleneimine) as core of different molecular weight. European Polymer Journal, 2013, 49, 2316-2326.	5.4	15
75	A new two-stage curing system: Thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer, 2013, 54, 5473-5481.	3.8	45
76	New chemically reworkable epoxy coatings obtained by the addition of polyesters with star topologies to diglycidyl ether of bisphenol A resins. Progress in Organic Coatings, 2013, 76, 1616-1624.	3.9	11
77	Modification of epoxy–anhydride thermosets with a hyperbranched poly(ester amide). II. Thermal, dynamic mechanical, and dielectric properties and thermal reworkability. Journal of Applied Polymer Science, 2013, 128, 4001-4013.	2.6	17
78	Epoxy/anhydride networks modified with polyhedral oligomeric silsesquioxanes. Polymer Composites, 2013, 34, 96-108.	4.6	14
79	Electrical application of polystyrene (PS) reinforced with old tire rubber (GTR): dielectric, thermal, and mechanical properties. Science and Engineering of Composite Materials, 2013, 20, 233-244.	1.4	6
80	Multiarm star with poly(ethyleneimine) core and poly($\hat{l}\mu$ -caprolactone) arms as modifiers of diglycidylether of bisphenol A thermosets cured by 1-methylimidazole. Reactive and Functional Polymers, 2013, 73, 431-441.	4.1	22
81	Enhanced chemical reworkability of DGEBA thermosets cured with rare earth triflates using aromatic hyperbranched polyesters (HBP) and multiarm star HBPâ€ <i>b</i> èâ€poly(εâ€caprolactone) as modifiers. Polymers for Advanced Technologies, 2013, 24, 962-970.	3.2	8
82	Unexpected differences between thermal and photoinitiated cationic curing of a diglycidyl ether of bisphenol A modified with a multiarm star poly(styrene)-b-poly($\hat{l}\mu$ -caprolactone) polymer. EXPRESS Polymer Letters, 2013, 7, 565-576.	2.1	9
83	Influence of end groups in hyperbranched polyesters used as modifiers in the characteristics of epoxy thermosets cured by adipic dihydrazide. EXPRESS Polymer Letters, 2013, 7, 595-606.	2.1	8
84	Simultaneous Monitoring of Curing Shrinkage and Degree of Cure of Thermosets by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy. Applied Spectroscopy, 2013, 67, 1427-1436.	2.2	26
85	Combined use of sepiolite and a hyperbranched polyester in the modification of epoxy/anhydride coatings: A study of the curing process and the final properties. Progress in Organic Coatings, 2012, 75, 364-372.	3.9	19
86	New aromatic–aliphatic hyperbranched polyesters with vinylic end groups of different length as modifiers of epoxy/anhydride thermosets. Reactive and Functional Polymers, 2012, 72, 556-563.	4.1	41
87	Ytterbium triflate as a new catalyst on the curing of epoxy–isocyanate based thermosets. Thermochimica Acta, 2012, 543, 188-196.	2.7	18
88	Novel epoxy-anhydride thermosets modified with a hyperbranched polyester as toughness enhancer. I. Kinetics study. Thermochimica Acta, 2012, 544, 17-26.	2.7	36
89	Network structure and thermomechanical properties of hybrid DGEBA networks cured with 1â€methylimidazole and hyperbranched poly(ethyleneimine)s. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1489-1503.	2.1	48
90	Efficient impact resistance improvement of epoxy/anhydride thermosets by adding hyperbranched polyesters partially modified with undecenoyl chains. Polymer, 2012, 53, 5232-5241.	3.8	60

#	Article	IF	CITATIONS
91	Synthesis of a new hyperbranchedâ€linearâ€hyperbranched triblock copolymer and its use as a chemical modifier for the cationic photo and thermal curing of epoxy resins. Journal of Polymer Science Part A, 2012, 50, 1133-1142.	2.3	27
92	New epoxy thermosets obtained from diglycidylether of bisphenol a and modified hyperbranched polyesters with long aliphatic chains cured by diisocyanates. Polymer Engineering and Science, 2012, 52, 2597-2610.	3.1	8
93	Improvement of epoxy thermosets using a thiol-ene based polyester hyperbranched polymer as modifier. Polymer International, 2012, 61, 727-734.	3.1	30
94	Modification of epoxy–anhydride thermosets using a hyperbranched poly(esterâ€amide): I. Kinetic study. Polymer International, 2012, 61, 1710-1725.	3.1	37
95	Curing and characterization of oxazolidoneâ€isocyanurateâ€ether networks. Journal of Applied Polymer Science, 2012, 125, 2779-2789.	2.6	16
96	Multiarm star poly(glycidol)-block-poly(styrene) as modifier of anionically cured diglycidylether of bisphenol A thermosetting coatings. Progress in Organic Coatings, 2012, 73, 62-69.	3.9	14
97	The use of dihydrazides as latent curing agents in diglycidyl ether of bisphenol A coatings. Progress in Organic Coatings, 2012, 74, 59-66.	3.9	41
98	New Improved Thermosets Obtained From Diglycidylether of Bisphenol A and a Multiarm Star Copolymer Based on Hyperbranched Poly(glycidol) Core and Poly(methyl methacrylate) Arms. Macromolecular Chemistry and Physics, 2012, 213, 335-343.	2.2	11
99	The Effect of the Degree of Branching in Hyperbranched Polyesters Used as Reactive Modifiers in Epoxy Thermosets. Macromolecular Materials and Engineering, 2012, 297, 85-94.	3.6	19
100	Thermal analysis of enhanced poly(vinyl alcohol)â€based protonâ€conducting membranes crosslinked with sulfonation agents for direct methanol fuel cells. Journal of Applied Polymer Science, 2012, 124, E57.	2.6	8
101	Study of the thermal degradation of bioactive sol–gel coatings for the optimization of its curing process. Journal of Thermal Analysis and Calorimetry, 2012, 107, 499-508.	3.6	13
102	Comparative curing kinetics and thermal–mechanical properties of DGEBA thermosets cured with a hyperbranched poly(ethyleneimine) and an aliphatic triamine. Thermochimica Acta, 2011, 526, 9-21.	2.7	61
103	Effect of polymer topology on the curing process and mechanical characteristics ofÂepoxy thermosets modified with linear or multiarm star poly(Îμ-caprolactone). Polymer, 2011, 52, 4694-4702.	3.8	42
104	DGEBA thermosets modified with an amphiphilic star polymer. Study on the effect of the initiator on the curing process and morphology. Polymer, 2011, 52, 5009-5017.	3.8	11
105	Effect of a hyperbranched polymer over the thermal curing and the photocuring of an epoxy resin. Journal of Thermal Analysis and Calorimetry, 2011, 105, 479-488.	3.6	7
106	Kinetic studies of the degradation of poly(vinyl alcohol)-based proton-conducting membranes at low temperatures. Thermochimica Acta, 2011, 521, 139-147.	2.7	24
107	Multiarm star poly(glycidol)â€ <i>block</i> â€poly(ε aprolactone) of different arm lengths and their use as modifiers of diglycidylether of bisphenol a thermosets. Journal of Polymer Science Part A, 2011, 49, 2395-2406.	2.3	35
108	Synthesis, characterization, and rheological properties of multiarm stars with poly(glycidol) core and poly(methyl methacrylate) arms by AGET ATRP. Journal of Polymer Science Part A, 2011, 49, 3138-3151.	2.3	15

#	Article	IF	CITATIONS
109	Synthesis of a new multiarm star polymer based on hyperbranched poly(styrene) core and poly(<i>ε</i> εÎournal of Polymer Science Part A, 2011, 49, 4639-4649.	2.3	27
110	New thermosets obtained from bisphenol A diglycidyl ether and hydroxylâ€ended hyperbranched polymers partially blocked with benzoyl and trimethylsilyl groups. Polymer International, 2011, 60, 389-397.	3.1	12
111	Influence of the end groups of hyperbranched poly(glycidol) on the cationic curing and morphology of diglycidylether of bisfenol A thermosets. Reactive and Functional Polymers, 2011, 71, 380-389.	4.1	18
112	New pegylated hyperbranched polyester as chemical modifier of epoxy resins in UV cationic photocuring. Reactive and Functional Polymers, 2011, 71, 417-424.	4.1	37
113	UV generation of a multifunctional hyperbranched thermal crosslinker to cure epoxy resins. Polymer, 2011, 52, 3269-3276.	3.8	49
114	Synthesis of a New Hyperbranched Polyaminoester and Its Use as a Reactive Modifier in Anionic Curing of DGEBA Thermosets. Macromolecular Chemistry and Physics, 2010, 211, 1879-1889.	2.2	26
115	Novel thermosets based on DGEBA and hyperbranched polymers modified with vinyl and epoxy end groups. Reactive and Functional Polymers, 2010, 70, 798-806.	4.1	62
116	New hyperbranched polyester modified DGEBA thermosets with improved chemical reworkability. Polymer Degradation and Stability, 2010, 95, 445-452.	5.8	36
117	Crosslinking of mixtures of DGEBA with 1,6-dioxaspiro [4,4] nonan-2,7-dione initiated by tertiary amines. Part IV. Effect of hydroxyl groups on initiation and curing kinetics. Polymer, 2010, 51, 26-34.	3.8	45
118	Thermal curing and photocuring of an epoxy resin modified with a hyperbranched polymer. Thermochimica Acta, 2010, 510, 1-8.	2.7	26
119	New epoxy thermosets modified with hyperbranched poly(ester-amide) of different molecular weight. European Polymer Journal, 2010, 46, 1498-1509.	5.4	66
120	Copolymerization of diglycidylether of bisphenol A and bicyclic bis(γâ€lactone)s using rare earth metal triflates as initiators studied with infrared spectroscopy. Polymer International, 2010, 59, 1039-1045.	3.1	0
121	Characterization of new reworkable thermosetting coatings obtained by cationic and anionic curing of DGEBA and some Meldrum acid derivatives. Progress in Organic Coatings, 2009, 65, 175-181.	3.9	28
122	New Thermosets Obtained by Thermal and UV $\hat{a} \in Induced$ Cationic Copolymerization of DGEBA with $4\hat{a} \in Phenyl\hat{a} \in Ir\hat{a} < Ir\hat{a} \in Ir\hat{a} \in Ir$ and Physics, 2009, 210, 1450-1460.	2.2	10
123	Anionic copolymerization of diglycidyl ether of bisphenol A with Meldrum's acid derivatives initiated by 4â€(<i>N,N</i> à€dimethylamino) pyridine. Journal of Applied Polymer Science, 2009, 111, 1805-1815.	2.6	2
124	A new strategy for controlling shrinkage of DGEBA resins cured by cationic copolymerization with hydroxylâ€terminated hyperbranched polymers and ytterbium triflate as an initiator. Journal of Applied Polymer Science, 2009, 111, 2822-2929.	2.6	54
125	Crosslinking of mixtures of diglycidylether of bisphenolâ€A with 1,6â€dioxaspiro[4.4] nonanâ€2,7â€dione initiated by tertiary amines: III. Effect of hydroxyl groups on network formation. Polymer International, 2009, 58, 1401-1410.	3.1	21
126	Study on the chemical modification of epoxy/anhydride thermosets using a hydroxyl terminated hyperbranched polymer. European Polymer Journal, 2009, 45, 1454-1466.	5.4	92

#	Article	IF	CITATIONS
127	Cationic copolymerization of DGEBA with two bicyclic bis (\hat{I}^3 -lactone) derivatives using rare earth metal triflates as initiators. Polymer, 2009, 50, 1838-1845.	3.8	7
128	Anionic copolymerization of DGEBA with two bicyclic bis(\hat{l}^3 -lactone) derivatives using tertiary amines as initiators. Polymer, 2009, 50, 2228-2236.	3.8	13
129	New improved thermosets obtained from DGEBA and a hyperbranched poly(ester-amide). Polymer, 2009, 50, 5374-5383.	3.8	99
130	Study on the effect of rare earth metal triflates as initiators in the cationic curing of DGEBA/ \hat{I}^3 -valerolactone mixtures and characterization of the thermosets obtained. European Polymer Journal, 2009, 45, 1282-1292.	5.4	14
131	Crosslinking of mixtures of DGEBA with 1,6-dioxaspiro[4.4]nonan-2,7-dione initiated by tertiary amines, Part II: Thermo-mechanical properties and reworkability. Polymer Degradation and Stability, 2008, 93, 760-769.	5.8	11
132	Influence of the proportion of ytterbium triflate as initiator on the mechanism of copolymerization of DGEBA epoxy resin and \hat{I}^3 -butyrolactone. Journal of Thermal Analysis and Calorimetry, 2008, 91, 385-393.	3.6	17
133	Isothermal kinetics of photopolymerization and thermal polymerization of bis-GMA/TEGDMA resins. Journal of Thermal Analysis and Calorimetry, 2008, 92, 513-522.	3.6	25
134	New poly(etherâ€ester) thermosets obtained by cationic curing of DGEBA and 7,7â€dimethylâ€6,8â€dioxaspiro[3.5] nonaneâ€5,9â€dione with several Lewis acids as initiators. Journal of Polymer Science Part A, 2008, 46, 1229-1239.	2.3	7
135	Synthesis of a new diglycidylic Meldrum acid derivative and study of the curing with lanthanide triflates as initiators. Journal of Polymer Science Part A, 2008, 46, 3088-3097.	2.3	1
136	Cationic curing of diglycidyl ether of bisphenol A and 2,2,5,5â€tetramethylâ€4,6â€dioxoâ€1,3â€dioxane and degradation of the thermosets obtained. Journal of Applied Polymer Science, 2008, 108, 1229-1237.	2.6	6
137	Crosslinking of mixtures of DGEBA with 1,6â€dioxaspiro[4,4]nonanâ€2,7â€dione initiated by tertiary amines. I. Study of the reaction and kinetic analysis. Journal of Applied Polymer Science, 2008, 109, 2304-2315.	2.6	24
138	New thermosets obtained from DGEBA and Meldrum acid with lanthanum and ytterbium triflates as cationic initiators. European Polymer Journal, 2008, 44, 1535-1547.	5.4	7
139	Kinetic study by FTIR and DSC on the cationic curing of a DGEBA/ \hat{I}^3 -valerolactone mixture with ytterbium triflate as an initiator. Thermochimica Acta, 2008, 479, 37-44.	2.7	12
140	Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corrosion Science, 2008, 50, 721-728.	6.6	240
141	Kinetic study of the curing of mixtures of DGEBA and five-membered cyclic carbonates with lanthanum triflate as cationic initiator. Journal of Applied Polymer Science, 2007, 103, 2875-2884.	2.6	7
142	New thermosets obtained by cationic copolymerization of DGEBA with γ-caprolactone with improvement in the shrinkage. II. Time–temperature–transformation (TTT) cure diagram. Journal of Applied Polymer Science, 2007, 104, 3406-3416.	2.6	24
143	Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione). Thermochimica Acta, 2007, 464, 35-41.	2.7	10
144	Effect of oxygen on the photopolymerization of a mixture of two dimethacrylates. Thermochimica Acta, 2007, 463, 81-86.	2.7	10

#	Article	IF	Citations
145	The degradation of new thermally degradable thermosets obtained by cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione). Polymer Degradation and Stability, 2007, 92, 596-604.	5.8	42
146	A study of the degradation of ester-modified epoxy resins obtained by cationic copolymerization of DGEBA with \hat{l}^3 -lactones initiated by rare earth triflates. Polymer Degradation and Stability, 2007, 92, 2214-2222.	5.8	36
147	Influence of the initiating mechanism on the cationic photopolymerization of a cycloaliphatic epoxy resin with arylsulfonium salts. Journal of Polymer Science Part A, 2007, 45, 16-25.	2.3	27
148	New thermosets obtained by the cationic copolymerization of diglycidyl ether of bisphenol A with \hat{I}^3 -caprolactone with an improvement in the shrinkage. I. Study of the chemical processes and physical characteristics. Journal of Polymer Science Part A, 2007, 45, 1968-1979.	2.3	18
149	FTIR/ATR study of the copolymerization of diglycidyl ether of Bisphenol A with methyl-substituted \hat{I}^3 -lactones catalyzed by rare earth triflate initiators. Journal of Polymer Science Part A, 2007, 45, 2129-2141.	2.3	32
150	Novel thermosets obtained by UVâ€induced cationic copolymerization of DGEBA with an spirobislactone. Journal of Polymer Science Part A, 2007, 45, 5446-5458.	2.3	9
151	Study of epoxy and alkyd coatings modified with emeraldine base form of polyaniline. Progress in Organic Coatings, 2007, 58, 316-322.	3.9	47
152	Influence of the addition of erbium and ytterbium triflates in the curing kinetics of a DGEBA/o-tolybiguanide powder mixture. Journal of Thermal Analysis and Calorimetry, 2007, 89, 223-231.	3.6	10
153	Comparative kinetic study of the non-isothermal thermal curing of bis-GMA/TEGDMA systems. Journal of Thermal Analysis and Calorimetry, 2007, 89, 233-244.	3.6	37
154	N,N-dimethylaminopyridine as initiator in the copolymerization of diglycidylether of bisphenol A with six-membered cyclic carbonates. Journal of Polymer Science Part A, 2006, 44, 2873-2882.	2.3	7
155	Structural and phenomenological study on the cationic curing of mixtures of epoxy resin and 5,5-dimethyl-1,3-dioxane-2-one. Journal of Polymer Science Part A, 2006, 44, 4546-4558.	2.3	3
156	Reduction of the shrinkage of thermosets by the cationic curing of mixtures of diglycidyl ether of bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione). Journal of Polymer Science Part A, 2006, 44, 6869-6879.	2.3	23
157	Synthesis of poly(glycolic acid-alt-12-aminododecanoic acid): The thermal polymerization kinetics of sodiumN-chloroacetyl-12-aminododecanoate. Journal of Polymer Science Part A, 2006, 44, 1199-1213.	2.3	4
158	Cationic copolymerization of diglycidyl ether of bisphenol A with phthalide or 3,3′-diphtalide catalyzed by lanthanide triflates. Journal of Polymer Science Part A, 2006, 44, 1711-1721.	2.3	10
159	Calorimetric and thermogravimetric studies of UV-irradiated polypropylene/starch-based materials aged in soil. Polymer Degradation and Stability, 2006, 91, 44-51.	5.8	50
160	Addition effect of erbium(III) trifluoromethanesulfonate in the homopolymerization kinetics of a DGEBA resin. Thermochimica Acta, 2006, 441, 45-52.	2.7	8
161	Cationic crosslinking of solid dgeba resins with ytterbium(III) trifluoromethanesulfonate as initiator. Journal of Thermal Analysis and Calorimetry, 2006, 83, 429-438.	3.6	16
162	Calorimetric studies of PP/Mater-Bi blends aged in soil. Journal of Applied Polymer Science, 2006, 100, 3446-3453.	2.6	6

#	Article	IF	Citations
163	Mechanical relaxations of poly(β,L-aspartate)s. Journal of Applied Polymer Science, 2006, 99, 994-1003.	2.6	О
164	Curing of mixtures of epoxy resins and 4-methyl-1,3-dioxolan-2-one with several initiators. Journal of Applied Polymer Science, 2006, 102, 2086-2093.	2.6	3
165	Poly[(4-hydroxybutyric acid)-alt-(glycolic acid)]: Synthesis by Thermal Polycondensation of Metal Salts of 4-Chlorobutyric Acid Carboxymethyl Ester. Macromolecular Chemistry and Physics, 2006, 207, 90-103.	2.2	8
166	New thermosets obtained by copolymerization of DGEBA with 1,5,7,11-tetraoxaspiro[5,5]undecane catalyzed by lanthanide triflates. Polymer, 2005, 46, 6878-6887.	3.8	14
167	New degradable thermosets obtained by cationic copolymerization of DGEBA with an s(\hat{I}^3 -butyrolactone). Polymer, 2005, 46, 10637-10647.	3 . 8	45
168	Cationic copolymerization of cycloaliphatic epoxy resin with an spirobislactone with lanthanum triflate as initiator. Thermochimica Acta, 2005, 438, 144-154.	2.7	17
169	Application of a polythiophene derivative as anticorrosive additive for paints. Progress in Organic Coatings, 2005, 53, 217-224.	3.9	57
170	Thermal analysis characterization of the degradation of biodegradable starch blends in soil. Journal of Applied Polymer Science, 2005, 96, 358-371.	2.6	23
171	Isothermal degradation and thermooxidative degradation of an epoxy powder coating. Journal of Thermal Analysis and Calorimetry, 2005, 80, 163-169.	3.6	16
172	Kinetic studies on the thermal polymerization of N-chloroacetyl-11-aminoundecanoate potassium salt. Journal of Polymer Science Part A, 2005, 43, 1166-1176.	2.3	22
173	Improved thermosets obtained from cycloaliphatic epoxy resins and Î ³ -butyrolactone with lanthanide triflates as initiators. I. Study of curing by differential scanning calorimetry and Fourier transform infrared. Journal of Polymer Science Part A, 2005, 43, 2337-2347.	2.3	20
174	Cationic copolymerization of cycloaliphatic epoxy resin with a spirobislactone with lanthanum triflate as initiator: I. Characterization and shrinkage. Journal of Polymer Science Part A, 2005, 43, 3421-3432.	2.3	26
175	Crosslinking study of mixtures of DGEBA and 1,3-dioxan-2-one catalyzed by lanthanide triflates. Journal of Polymer Science Part A, 2005, 43, 5799-5813.	2.3	15
176	Mechanical, dielectric and enthalpic relaxation of a thermosetting powder coating based on carboxyl-terminated polyester and triglycidylisocyanurate. Progress in Organic Coatings, 2004, 51, 139-144.	3.9	6
177	Influence of lanthanide triflate compounds on formation of networks from DGEBA and \hat{I}^3 -butyrolactone. Journal of Polymer Science Part A, 2004, 42, 3782-3791.	2.3	35
178	Kinetic study by FTIR, TMA, and DSC of the curing of a mixture of DGEBA resin and \hat{i}^3 -butyrolactone catalyzed by ytterbium triflate. Journal of Applied Polymer Science, 2004, 92, 381-393.	2.6	65
179	Comparative study of the degradation kinetics of three powder thermoset coatings. Thermochimica Acta, 2004, 419, 181-187.	2.7	26
180	Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polymer Degradation and Stability, 2004, 86, 483-491.	5.8	119

#	Article	IF	CITATIONS
181	Non-isothermal degradation of a thermoset powder coating in inert and oxidant atmospheres. Journal of Thermal Analysis and Calorimetry, 2003, 72, 719-728.	3.6	25
182	Simulation of isothermal cure of A powder coating. Journal of Thermal Analysis and Calorimetry, 2003, 72, 707-718.	3.6	73
183	Behavior of nonazeotropic compositions of a styrene-unsaturated polyester resin analyzed through FTIR spectroscopy and dynamic mechanical thermal analysis. Journal of Applied Polymer Science, 2003, 89, 3618-3625.	2.6	9
184	Curing of a thermosetting powder coating by means of DMTA, TMA and DSC. Polymer, 2003, 44, 2067-2079.	3.8	113
185	Copolymerization of diglycidyl ether of bisphenol A with \hat{I}^3 -butyrolactone catalyzed by ytterbium triflate: Shrinkage during curing. Journal of Polymer Science Part A, 2003, 41, 2794-2808.	2.3	64
186	Isoconversional kinetic analysis of a carboxyl terminated polyester resin crosslinked with triglycidyl isocyanurate (TGIC) used in powder coatings from experimental results obtained by DSC and TMDSC. Thermochimica Acta, 2002, 388, 355-370.	2.7	36
187	Polyurethane–unsaturated polyester interpenetrating polymer networks: thermal and dynamic mechanical thermal behaviour. Polymer, 2001, 42, 9469-9479.	3.8	69
188	Study of Lanthanide Triflates as New Curing Initiators for Cycloaliphatic Epoxy Resins. Macromolecular Chemistry and Physics, 2001, 202, 2554-2564.	2.2	30
189	Oxidation-induced strength degradation of WC–Co hardmetals. International Journal of Refractory Metals and Hard Materials, 2001, 19, 303-309.	3.8	90
190	Study of lanthanide triflates as new curing initiators for DGEBA. Polymer, 2000, 41, 8465-8474.	3.8	55
191	Thermoset Cure Kinetics by Isoconversional Methods. Magyar Apróvad Közlemények, 1999, 56, 771-781.	1.4	35
192	Effect of the initiator content and temperature on the curing of an unsaturated polyester resin. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 751-768.	2.1	32
193	Determination of gel and vitrification times of thermoset curing process by means of TMA, DMTA and DSC techniques. Journal of Theoretical Biology, 1997, 49, 269-279.	1.7	67
194	Time-temperature transformation (TTT) cure diagram of an unsaturated polyester resin. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 371-388.	2.1	57
195	Comparative study of the cure kinetics of an unsaturated polyester resin using different procedures. Polymer Engineering and Science, 1996, 36, 835-851.	3.1	68
196	Effect of the inhibitor on the curing of an unsaturated polyester resin. Polymer, 1995, 36, 3511-3521.	3.8	38
197	A kinetic study of the effect of three catalytic systems on the curing of an unsaturated polyester resin. Journal of Applied Polymer Science, 1994, 51, 453-462.	2.6	29
198	Effects of experimental sample mass on the calorimetric study of thermoset resins. Journal of Thermal Analysis, 1992, 38, 917-927.	0.6	7

#	Article	IF	CITATIONS
199	Theoretical and experimental conversion in the curing of unsaturated polyester resins with styrene as a crosslinking agent. Journal of Applied Polymer Science, 1992, 45, 227-236.	2.6	21
200	Calorimetric analysis of the curing behavior of an unsaturated polyester resin using different catalytic systems. Thermochimica Acta, 1988, 134, 261-267.	2.7	19