List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402312/publications.pdf Version: 2024-02-01

		6233	12910
306	21,135	80	131
papers	citations	h-index	g-index
311	311	311	13664
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adenosine and Brain Function. International Review of Neurobiology, 2005, 63, 191-270.	0.9	601
2	Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochemistry International, 2001, 38, 107-125.	1.9	554
3	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	1.7	553
4	Neuroinflammation, Oxidative Stress and the Pathogenesis of Alzheimers Disease. Current Pharmaceutical Design, 2010, 16, 2766-2778.	0.9	547
5	Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade. Purinergic Signalling, 2005, 1, 111-134.	1.1	456
6	Adenosine receptors and brain diseases: Neuroprotection and neurodegeneration. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1380-1399.	1.4	361
7	How does adenosine control neuronal dysfunction and neurodegeneration?. Journal of Neurochemistry, 2016, 139, 1019-1055.	2.1	341
8	Adenosine A2A receptors and basal ganglia physiology. Progress in Neurobiology, 2007, 83, 277-292.	2.8	336
9	Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs atÂHippocampal Mossy Fiber Synapses. Neuron, 2008, 57, 121-134.	3.8	326
10	Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Experimental Neurology, 2007, 203, 241-245.	2.0	325
11	Adenosine A _{2A} Receptor Blockade Prevents Synaptotoxicity and Memory Dysfunction Caused by β-Amyloid Peptides via p38 Mitogen-Activated Protein Kinase Pathway. Journal of Neuroscience, 2009, 29, 14741-14751.	1.7	308
12	Caffeine acts through neuronal adenosine A _{2A} receptors to prevent mood and memory dysfunction triggered by chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7833-7838.	3.3	248
13	Preferential Release of ATP and Its Extracellular Catabolism as a Source of Adenosine upon High―but Not Lowâ€Frequency Stimulation of Rat Hippocampal Slices. Journal of Neurochemistry, 1996, 67, 2180-2187.	2.1	232
14	An Update on Adenosine A2A-Dopamine D2 Receptor Interactions: Implications for the Function of G Protein-Coupled Receptors. Current Pharmaceutical Design, 2008, 14, 1468-1474.	0.9	229
15	Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Research, 1994, 649, 208-216.	1.1	223
16	Involvement of Cannabinoid Receptors in the Regulation of Neurotransmitter Release in the Rodent Striatum: A Combined Immunochemical and Pharmacological Analysis. Journal of Neuroscience, 2005, 25, 2874-2884.	1.7	221
17	Neuroprotection by caffeine and adenosine A2A receptor blockade of Î ² -amyloid neurotoxicity. British Journal of Pharmacology, 2003, 138, 1207-1209.	2.7	219
18	Inhibition by ATP of Hippocampal Synaptic Transmission Requires Localized Extracellular Catabolism by Ecto-Nucleotidases into Adenosine and Channeling to Adenosine A ₁ Receptors. Journal of Neuroscience, 1998, 18, 1987-1995.	1.7	207

#	Article	IF	CITATIONS
19	ATP as a multi-target danger signal in the brain. Frontiers in Neuroscience, 2015, 9, 148.	1.4	205
20	Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience, 2002, 112, 319-329.	1.1	201
21	Dual Presynaptic Control by ATP of Glutamate Release via Facilitatory P2X1, P2X2/3, and P2X3 and Inhibitory P2Y1, P2Y2, and/or P2Y4 Receptors in the Rat Hippocampus. Journal of Neuroscience, 2005, 25, 6286-6295.	1.7	201
22	Chronic Caffeine Consumption Prevents Memory Disturbance in Different Animal Models of Memory Decline. Journal of Alzheimer's Disease, 2010, 20, S95-S116.	1.2	198
23	Anticonvulsant and Sodium Channel-Blocking Properties of Novel 10,11-Dihydro-5H-dibenz[b,f]azepine-5-carboxamide Derivatives. Journal of Medicinal Chemistry, 1999, 42, 2582-2587.	2.9	189
24	Co-localization and functional interaction between adenosine A2A and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. Journal of Neurochemistry, 2005, 92, 433-441.	2.1	184
25	Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors. Nature Communications, 2016, 7, 11915.	5.8	184
26	Adenosine A _{2A} receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. Journal of Neurochemistry, 2011, 117, 100-111.	2.1	182
27	Potential Therapeutic Interest of Adenosine A2A Receptors in Psychiatric Disorders. Current Pharmaceutical Design, 2008, 14, 1512-1524.	0.9	181
28	Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. Journal of Neuroinflammation, 2013, 10, 16.	3.1	180
29	Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience, 2005, 132, 893-903.	1.1	179
30	Cross Talk Between A ₁ and A _{2A} Adenosine Receptors in the Hippocampus and Cortex of Young Adult and Old Rats. Journal of Neurophysiology, 1999, 82, 3196-3203.	0.9	177
31	ATP as a presynaptic modulator. Life Sciences, 2000, 68, 119-137.	2.0	174
32	Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H] CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 261-271.	1.4	171
33	Adenosine A _{2A} receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Annals of Neurology, 2008, 63, 338-346.	2.8	159
34	A Critical Role of the Adenosine A _{2A} Receptor in Extrastriatal Neurons in Modulating Psychomotor Activity as Revealed by Opposite Phenotypes of Striatum and Forebrain A _{2A} Receptor Knock-Outs. Journal of Neuroscience, 2008, 28, 2970-2975.	1.7	152
35	Subcellular localization of adenosine A1 receptors in nerve terminals and synapses of the rat hippocampus. Brain Research, 2003, 987, 49-58.	1.1	149
36	Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. European Journal of Neuroscience, 2011, 34, 12-21.	1.2	149

#	Article	IF	CITATIONS
37	Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice. Science Translational Medicine, 2013, 5, 197ra104.	5.8	148
38	Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. British Journal of Pharmacology, 1996, 119, 253-260.	2.7	147
39	Ecto-5'-Nucleotidase (CD73)-Mediated Formation of Adenosine Is Critical for the Striatal Adenosine A2A Receptor Functions. Journal of Neuroscience, 2013, 33, 11390-11399.	1.7	146
40	Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurochemistry International, 2008, 52, 65-72.	1.9	145
41	Modification of A-i and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. NeuroReport, 1995, 6, 1583.	0.6	141
42	Excitatory and Inhibitory Effects of A ₁ and A _{2A} Adenosine Receptor Activation on the Electrically Evoked [³ H]Acetylcholine Release from Different Areas of the Rat Hippocampus. Journal of Neurochemistry, 1994, 63, 207-214.	2.1	141
43	The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson's disease. Purinergic Signalling, 2020, 16, 167-174.	1.1	139
44	Adenosine A _{2A} receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia, 2012, 60, 702-716.	2.5	136
45	Deletion of Adenosine A2A Receptors From Astrocytes Disrupts Glutamate Homeostasis Leading to Psychomotor and Cognitive Impairment: Relevance to Schizophrenia. Biological Psychiatry, 2015, 78, 763-774.	0.7	135
46	Depression as a Glial-Based Synaptic Dysfunction. Frontiers in Cellular Neuroscience, 2015, 9, 521.	1.8	134
47	Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocinâ€induced diabetic rats. Journal of Neurochemistry, 2009, 111, 368-379.	2.1	133
48	Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 2020, 25, 1876-1900.	4.1	129
49	Purinergic modulation of [3H]GABA release from rat hippocampal nerve terminals. Neuropharmacology, 2000, 39, 1156-1167.	2.0	126
50	Caffeine Consumption Prevents Memory Impairment, Neuronal Damage, and Adenosine A2A Receptors Upregulation in the Hippocampus of a Rat Model of Sporadic Dementia. Journal of Alzheimer's Disease, 2013, 34, 509-518.	1.2	124
51	Caffeine Consumption Prevents Diabetes-Induced Memory Impairment and Synaptotoxicity in the Hippocampus of NONcZNO10/LTJ Mice. PLoS ONE, 2012, 7, e21899.	1.1	119
52	Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Molecular Psychiatry, 2015, 20, 1339-1349.	4.1	118
53	Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiology of Aging, 2009, 30, 1877-1884.	1.5	117
54	Pharmacology of Adenosine A2A Receptors and Therapeutic Applications. Current Topics in Medicinal Chemistry, 2003, 3, 413-426.	1.0	115

#	Article	IF	CITATIONS
55	Caffeine and an adenosine A _{2A} receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. Journal of Neurochemistry, 2010, 112, 453-462.	2.1	115
56	Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-d-aspartate effects. Journal of Neurochemistry, 2005, 95, 1188-1200.	2.1	112
57	Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience, 2005, 133, 79-83.	1.1	111
58	Decrease of adenosine A1 receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. European Journal of Neuroscience, 2003, 18, 820-828.	1.2	108
59	Astrocytic Adenosine A2A Receptors Control the Amyloid-β Peptide-Induced Decrease of Glutamate Uptake. Journal of Alzheimer's Disease, 2012, 31, 555-567.	1.2	108
60	Antagonistic Interaction between Adenosine A _{2A} Receptors and Na ⁺ /K ⁺ -ATPase-α ₂ Controlling Glutamate Uptake in Astrocytes. Journal of Neuroscience, 2013, 33, 18492-18502.	1.7	105
61	Differential glutamate-dependent and glutamate-independent adenosine A1receptor-mediated modulation of dopamine release in different striatal compartments. Journal of Neurochemistry, 2007, 101, 355-363.	2.1	104
62	The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology, 2014, 81, 142-152.	2.0	104
63	Caffeine, Adenosine Receptors, and Synaptic Plasticity. Journal of Alzheimer's Disease, 2010, 20, S25-S34.	1.2	101
64	Enhanced Adenosine A2A Receptor Facilitation of Synaptic Transmission in the Hippocampus of Aged Rats. Journal of Neurophysiology, 2003, 90, 1295-1303.	0.9	97
65	Adenosine A2A receptor blockade prevents memory dysfunction caused by β-amyloid peptides but not by scopolamine or MK-801. Experimental Neurology, 2008, 210, 776-781.	2.0	97
66	Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals. , 2001, 26, 979-991.		96
67	Increased density and synapto-protective effect of adenosine A2A receptors upon sub-chronic restraint stress. Neuroscience, 2006, 141, 1775-1781.	1.1	96
68	Interaction of the Novel Anticonvulsant, BIA 2-093, with Voltage-Gated Sodium Channels: Comparison with Carbamazepine. Epilepsia, 2001, 42, 600-608.	2.6	95
69	Behavioral Phenotyping of Parkin-Deficient Mice: Looking for Early Preclinical Features of Parkinson's Disease. PLoS ONÉ, 2014, 9, e114216.	1.1	94
70	Increase in the Number, G Protein Coupling, and Efficiency of Facilitatory Adenosine A2A Receptors in the Limbic Cortex, but not Striatum, of Aged Rats. Journal of Neurochemistry, 2002, 73, 1733-1738.	2.1	92
71	Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. European Neuropsychopharmacology, 2013, 23, 317-328.	0.3	92
72	Adenosine and adenine nucleotides are independently released from both the nerve terminals and the muscle fibres upon electrical stimulation of the innervated skeletal muscle of the frog. Pflugers Archiv European Journal of Physiology, 1993, 424, 503-510.	1.3	89

#	Article	IF	CITATIONS
73	Adenosine Receptor Heteromers and their Integrative Role in Striatal Function. Scientific World Journal, The, 2007, 7, 74-85.	0.8	89
74	Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. Cellular and Molecular Life Sciences, 2006, 63, 2427-2431.	2.4	88
75	Long-term Effect of Convulsive Behavior on the Density of Adenosine A1 and A2A Receptors in the Rat Cerebral Cortex. Epilepsia, 2005, 46, 159-165.	2.6	87
76	Regulation of Fear Responses by Striatal and Extrastriatal Adenosine A2A Receptors in Forebrain. Biological Psychiatry, 2014, 75, 855-863.	0.7	87
77	Key Modulatory Role of Presynaptic Adenosine A _{2A} Receptors in Cortical Neurotransmission to the Striatal Direct Pathway. Scientific World Journal, The, 2009, 9, 1321-1344.	0.8	86
78	Binding of the prototypical adenosine A2A receptor agonist CGS 21680 to the cerebral cortex of adenosine A1 and A2A receptor knockout mice. British Journal of Pharmacology, 2004, 141, 1006-1014.	2.7	85
79	Modification of adenosine modulation of synaptic transmission in the hippocampus of aged rats. British Journal of Pharmacology, 2000, 131, 1629-1634.	2.7	83
80	Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiology of Disease, 2015, 79, 70-80.	2.1	83
81	Ecto-5'-Nucleotidase Is Associated with Cholinergic Nerve Terminals in the Hippocampus but Not in the Cerebral Cortex of the Rat. Journal of Neurochemistry, 1992, 59, 657-666.	2.1	82
82	Spatial memory impairments in a prediabetic rat model. Neuroscience, 2013, 250, 565-577.	1.1	80
83	Adenosine A 2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. Journal of Neurochemistry, 2005, 93, 595-604.	2.1	79
84	CB1 Receptor Antagonism Increases Hippocampal Acetylcholine Release: Site and Mechanism of Action. Molecular Pharmacology, 2006, 70, 1236-1245.	1.0	78
85	Adenosine <scp>A</scp> ₂ <scp>_A</scp> receptors are necessary and sufficient to trigger memory impairment in adult mice. British Journal of Pharmacology, 2015, 172, 3831-3845.	2.7	78
86	Caffeine and adenosine A _{2A} receptor inactivation decrease striatal neuropathology in a lentiviralâ€based model of Machado–Joseph disease. Annals of Neurology, 2013, 73, 655-666.	2.8	77
87	Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer's disease. Neuropharmacology, 2014, 76, 51-56.	2.0	77
88	Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer's disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiology of Disease, 2019, 132, 104570.	2.1	77
89	Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Frontiers in Psychiatry, 2014, 5, 67.	1.3	76
90	ZM241385 is an antagonist of the facilitatory responses produced by the A2A adenosine receptor agonists CGS21680 and HENECA in the rat hippocampus. British Journal of Pharmacology, 1997, 122, 1279-1284.	2.7	75

#	Article	IF	CITATIONS
91	Adenosine A2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory. Neuropsychopharmacology, 2016, 41, 2862-2871.	2.8	75
92	Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neuroscience Letters, 1995, 196, 41-44.	1.0	74
93	Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure–induced transient ischemic injury. Translational Research, 2016, 169, 112-128.	2.2	74
94	Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 2018, 117, 72-81.	2.1	74
95	Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. Journal of Neuroinflammation, 2015, 12, 115.	3.1	73
96	The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A1 and A2A receptors. Biochemical Pharmacology, 2019, 166, 313-321.	2.0	72
97	Adenosine A3 receptors are located in neurons of the rat hippocampus. NeuroReport, 2003, 14, 1645-1648.	0.6	71
98	Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Molecular Psychiatry, 2017, 22, 1035-1043.	4.1	69
99	Parallel modification of adenosine extracellular metabolism and modulatory action in the hippocampus of aged rats. Journal of Neurochemistry, 2001, 76, 372-382.	2.1	68
100	International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacological Reviews, 2022, 74, 340-372.	7.1	67
101	Chapter 23 Purinergic regulation of acetylcholine release. Progress in Brain Research, 1996, 109, 231-241.	0.9	66
102	Role of Microglia Adenosine A2AReceptors in Retinal and Brain Neurodegenerative Diseases. Mediators of Inflammation, 2014, 2014, 1-13.	1.4	66
103	Adenosine A _{2A} Receptors Modulate α-Synuclein Aggregation and Toxicity. Cerebral Cortex, 2017, 27, bhv268.	1.6	66
104	Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience, 2006, 138, 1195-1203.	1.1	65
105	Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. European Journal of Pharmacology, 2011, 655, 38-45.	1.7	64
106	Localization and Trafficking of Amyloid-Î ² Protein Precursor and Secretases: Impact on Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 329-347.	1.2	64
107	Adenosine A2A Receptors in Striatal Glutamatergic Terminals and GABAergic Neurons Oppositely Modulate Psychostimulant Action and DARPP-32 Phosphorylation. PLoS ONE, 2013, 8, e80902.	1.1	64
108	Extracellular metabolism of adenine nucleotides and adenosine in the innervated skeletal muscle of the frog. European Journal of Pharmacology, 1991, 197, 83-92.	1.7	61

#	Article	IF	CITATIONS
109	Purinergic Modulation of the Evoked Release of [3H]Acetylcholine from the Hippocampus and Cerebral Cortex of the Rat: Role of the Ectonucleotidases. European Journal of Neuroscience, 1994, 6, 33-42.	1.2	61
110	Modification of adenosine A1 and A2A receptor density in the hippocampus of streptozotocin-induced diabetic rats. Neurochemistry International, 2006, 48, 144-150.	1.9	60
111	Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission. Journal of Neurochemistry, 2011, 116, 273-280.	2.1	59
112	Inhibition of [3H]γ-aminobutyric acid release by kainate receptor activation in rat hippocampal synaptosomes. European Journal of Pharmacology, 1997, 323, 167-172.	1.7	58
113	Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death and Disease, 2018, 9, 297.	2.7	58
114	Neuronal Adenosine A2A Receptors Are Critical Mediators of Neurodegeneration Triggered by Convulsions. ENeuro, 2018, 5, ENEURO.0385-18.2018.	0.9	58
115	Caffeine triggers behavioral and neurochemical alterations in adolescent rats. Neuroscience, 2014, 270, 27-39.	1.1	57
116	Pre-synaptic glycine GlyT1 transporter - NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions. Journal of Neurochemistry, 2011, 117, 516-527.	2.1	56
117	Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses. Molecular Neurobiology, 2017, 54, 1552-1563.	1.9	55
118	Ectoâ€AMP Deaminase Blunts the ATPâ€Đerived Adenosine A 2A Receptor Facilitation of Acetylcholine Release at Rat Motor Nerve Endings. Journal of Physiology, 2003, 549, 399-408.	1.3	54
119	Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiology of Aging, 2008, 29, 1597-1601.	1.5	54
120	Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [3 H]GABA release. FEBS Letters, 2000, 469, 159-162.	1.3	53
121	Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience, 2003, 122, 111-121.	1.1	53
122	Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death and Disease, 2017, 8, e3065-e3065.	2.7	53
123	G Protein coupling of CGS 21680 binding sites in the rat hippocampus and cortex is different from that of adenosine A1 and striatal A2A receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 295-302.	1.4	52
124	Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Research, 1999, 826, 104-111.	1.1	51
125	Blockade of adenosine A2A receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiology of Disease, 2007, 27, 182-189.	2.1	51
126	Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biology, 2020, 18, 9.	1.7	51

#	Article	IF	CITATIONS
127	Central Ghrelin Resistance Permits the Overconsolidation of Fear Memory. Biological Psychiatry, 2017, 81, 1003-1013.	0.7	49
128	Purinergic signaling orchestrating neuron-glia communication. Pharmacological Research, 2020, 162, 105253.	3.1	49
129	Spermine improves recognition memory deficit in a rodent model of Huntington's disease. Neurobiology of Learning and Memory, 2009, 92, 574-580.	1.0	48
130	Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway. Journal of Neuroinflammation, 2012, 9, 204.	3.1	48
131	The role of parkinson's diseaseâ€associated receptor <scp>GPR</scp> 37 in the hippocampus: functional interplay with the adenosinergic system. Journal of Neurochemistry, 2015, 134, 135-146.	2.1	48
132	Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. Journal of Controlled Release, 2017, 262, 58-71.	4.8	48
133	Adenosine A2A receptor facilitation of synaptic transmission in the CA1 area of the rat hippocampus requires protein kinase C but not protein kinase A activation. Neuroscience Letters, 2000, 289, 127-130.	1.0	47
134	Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid \hat{I}^2 (A $\hat{I}^21\hat{a}$ \in 40) administration in mice. Journal of Neuroendocrinology, 2017, 29, .	1.2	47
135	Adenosine A2A receptors facilitate 45Ca2+ uptake through class A calcium channels in rat hippocampal CA3 but not CA1 synaptosomes. Neuroscience Letters, 1997, 238, 73-77.	1.0	46
136	Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience, 2007, 149, 382-391.	1.1	46
137	ROLE OF ADENOSINE IN THE CONTROL OF HOMOSYNAPTIC PLASTICITY IN STRIATAL EXCITATORY SYNAPSES. Journal of Integrative Neuroscience, 2005, 04, 445-464.	0.8	45
138	Presynaptic adenosine <scp>A_{2A}</scp> receptors dampen cannabinoid <scp>CB</scp> ₁ receptorâ€mediated inhibition of corticostriatal glutamatergic transmission. British Journal of Pharmacology, 2015, 172, 1074-1086.	2.7	45
139	Kainate Receptors Coupled to G _i /G _o Proteins in the Rat Hippocampus. Molecular Pharmacology, 1999, 56, 429-433.	1.0	44
140	Diabetes differentially affects the content of exocytotic proteins in hippocampal and retinal nerve terminals. Neuroscience, 2010, 169, 1589-1600.	1.1	44
141	Anandamide Effects in a Streptozotocin-Induced Alzheimer's Disease-Like Sporadic Dementia in Rats. Frontiers in Neuroscience, 2018, 12, 653.	1.4	44
142	Convergence of adenosine and GABA signaling for synapse stabilization during development. Science, 2021, 374, eabk2055.	6.0	44
143	Presynaptic modulation controlling neuronal excitability and epileptogenesis: role of kainate, adenosine and neuropeptide Y receptors. Neurochemical Research, 2003, 28, 1501-1515.	1.6	43
144	Adenosine promotes neuronal recovery from reactive oxygen species induced lesion in rat hippocampal slices. Neuroscience Letters, 2003, 339, 127-130.	1.0	43

#	Article	IF	CITATIONS
145	Adenosine A _{2b} receptors control A ₁ receptorâ€mediated inhibition of synaptic transmission in the mouse hippocampus. European Journal of Neuroscience, 2015, 41, 878-888.	1.2	43
146	Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer's disease. Neuropharmacology, 2016, 110, 519-529.	2.0	43
147	Different danger signals differently impact on microglial proliferation through alterations of ATP release and extracellular metabolism. Glia, 2015, 63, 1636-1645.	2.5	42
148	Enhanced ATP release and CD73â€mediated adenosine formation sustain adenosine A _{2A} receptor overâ€activation in a rat model of Parkinson's disease. British Journal of Pharmacology, 2019, 176, 3666-3680.	2.7	42
149	ATP is released from nerve terminals and from activated muscle fibres on stimulation of the rat phrenic nerve. Neuroscience Letters, 2003, 338, 225-228.	1.0	41
150	Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochemistry International, 2005, 47, 317-325.	1.9	40
151	Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease. Neurobiology of Disease, 2015, 74, 41-57.	2.1	40
152	Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus. Frontiers in Neuroscience, 2018, 12, 1015.	1.4	40
153	A functionally active presynaptic high-affinity kainate receptor in the rat hippocampal CA3 subregion. Neuroscience Letters, 1995, 185, 83-86.	1.0	39
154	Facilitation by P2 receptor activation of acetylcholine release from rat motor nerve terminals: interaction with presynaptic nicotinic receptors. Brain Research, 2000, 877, 245-250.	1.1	39
155	Immunologically Distinct Isoforms of Ecto-5′-Nucleotidase in Nerve Terminals of Different Areas of the Rat Hippocampus. Journal of Neurochemistry, 2001, 74, 334-338.	2.1	39
156	Lack of evidence for functional TRPV1 vanilloid receptors in rat hippocampal nerve terminals. Neuroscience Letters, 2006, 403, 151-156.	1.0	39
157	Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens. Neuropharmacology, 2014, 79, 488-497.	2.0	39
158	The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Scientific Reports, 2017, 7, 9452.	1.6	39
159	Purinergic signalling and brain development. Seminars in Cell and Developmental Biology, 2019, 95, 34-41.	2.3	39
160	Role of Adenosine in Epilepsy and Seizures. Journal of Caffeine and Adenosine Research, 2020, 10, 45-60.	0.8	39
161	Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens. Frontiers in Cellular Neuroscience, 2014, 8, 332.	1.8	37
162	Age-dependent decrease in adenosine A1receptor binding sites in the rat brain. FEBS Journal, 2001, 268, 2939-2947.	0.2	36

#	Article	IF	CITATIONS
163	Exercise attenuates levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience, 2013, 243, 46-53.	1.1	35
164	A Single Neurotoxic Dose of Methamphetamine Induces a Long-Lasting Depressive-Like Behaviour in Mice. Neurotoxicity Research, 2014, 25, 295-304.	1.3	35
165	Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats. Experimental Neurology, 2007, 204, 479-484.	2.0	34
166	Anandamide and NADA bi-directionally modulate presynaptic Ca2+ levels and transmitter release in the hippocampus. British Journal of Pharmacology, 2007, 151, 551-563.	2.7	34
167	GABA release by basket cells onto Purkinje cells, in rat cerebellar slices, is directly controlled by presynaptic purinergic receptors, modulating Ca2+ influx. Cell Calcium, 2008, 44, 521-532.	1.1	34
168	Electrophysiological and Immunocytochemical Evidence for P2X Purinergic Receptors in Pancreatic Î ² Cells. Pancreas, 2008, 36, 279-283.	0.5	33
169	GDNF control of the glutamatergic corticoâ€striatal pathway requires tonic activation of adenosine A _{2A} receptors. Journal of Neurochemistry, 2009, 108, 1208-1219.	2.1	33
170	Oncostatin M promotes excitotoxicity by inhibiting glutamate uptake in astrocytes: implications in HIV-associated neurotoxicity. Journal of Neuroinflammation, 2016, 13, 144.	3.1	33
171	Repeated cycles of binge-like ethanol exposure induce immediate and delayed neurobehavioral changes and hippocampal dysfunction in adolescent female rats. Behavioural Brain Research, 2018, 350, 99-108.	1.2	33
172	Modulation of the Rat Hippocampal Dinucleotide Receptor by Adenosine Receptor Activation. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 441-450.	1.3	32
173	The Adenosine Neuromodulation System in Schizophrenia. International Review of Neurobiology, 2014, 119, 395-449.	0.9	32
174	Transducing system operated by adenosine A2A receptors to facilitate acetylcholine release in the rat hippocampus. European Journal of Pharmacology, 2002, 454, 31-38.	1.7	31
175	The exercise sex gap and the impact of the estrous cycle on exercise performance in mice. Scientific Reports, 2018, 8, 10742.	1.6	31
176	Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex. Frontiers in Pharmacology, 2018, 9, 133.	1.6	30
177	Neuronal adenosine A2A receptors signal ergogenic effects of caffeine. Scientific Reports, 2020, 10, 13414.	1.6	30
178	Functional interaction between preâ€synaptic <scp>α6β2</scp> ontaining nicotinic and adenosine <scp>A_{2A}</scp> receptors in the control of dopamine release in the rat striatum. British Journal of Pharmacology, 2013, 169, 1600-1611.	2.7	29
179	<scp>ATP</scp> P2Y1 receptors control cognitive deficits and neurotoxicity but not glial modifications induced by brain ischemia in mice. European Journal of Neuroscience, 2014, 39, 614-622.	1.2	29
180	Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats. Molecular Neurobiology, 2016, 53, 3891-3899.	1.9	29

#	Article	IF	CITATIONS
181	Regionâ€specific control of microglia by adenosine A _{2A} receptors: uncoupling anxiety and associated cognitive deficits in female rats. Clia, 2019, 67, 182-192.	2.5	29
182	Solubilization and immunological identification of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat hippocampus. Neuroscience Letters, 2003, 336, 97-100.	1.0	28
183	Different metabolism of glutamatergic and GABAergic compartments in superfused hippocampal slices characterized by nuclear magnetic resonance spectroscopy. Neuroscience, 2007, 144, 1305-1313.	1.1	28
184	Therapeutic Opportunities for Caffeine in Alzheimer's Disease and Other Neurodegenerative Disorders. Journal of Alzheimer's Disease, 2010, 20, S1-S2.	1.2	28
185	Does Caffeine Consumption Modify Cerebrospinal Fluid Amyloid-β Levels inÂPatients with Alzheimer's Disease?. Journal of Alzheimer's Disease, 2015, 47, 1069-1078.	1.2	28
186	Ketone bodies effectively compete with glucose for neuronal acetyl oA generation in rat hippocampal slices. NMR in Biomedicine, 2015, 28, 1111-1116.	1.6	28
187	ZM 241385, an adenosine A2A receptor antagonist, inhibits hippocampal A1 receptor responses. European Journal of Pharmacology, 1999, 383, 395-398.	1.7	27
188	Modification by Arachidonic Acid of Extracellular Adenosine Metabolism and Neuromodulatory Action in the Rat Hippocampus. Journal of Biological Chemistry, 2000, 275, 37572-37581.	1.6	27
189	Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. Journal of Neuroscience Research, 2006, 83, 832-844.	1.3	27
190	CB1 receptor activation inhibits neuronal and astrocytic intermediary metabolism in the rat hippocampus. Neurochemistry International, 2012, 60, 1-8.	1.9	27
191	Microgliaâ€derived purines modulate mossy fibre synaptic transmission and plasticity through P2X ₄ and A ₁ receptors. European Journal of Neuroscience, 2016, 43, 1366-1378.	1.2	27
192	Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats. Behavioural Brain Research, 2016, 301, 43-54.	1.2	27
193	Clinically relevant concentrations of ketamine mainly affect long-term potentiation rather than basal excitatory synaptic transmission and do not change paired-pulse facilitation in mouse hippocampal slices. Brain Research, 2014, 1560, 10-17.	1.1	26
194	Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signalling, 2015, 11, 561-569.	1.1	26
195	Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. Molecular Neurobiology, 2019, 56, 3145-3158.	1.9	26
196	Caffeine and cannabinoid receptors modulate impulsive behavior in an animal model of attentional deficit and hyperactivity disorder. European Journal of Neuroscience, 2019, 49, 1673-1683.	1.2	26
197	Separation of adenosine triphosphate and its degradation products in innervated muscle of the frog by reverse phase high-performance liquid chromatography. Chromatographia, 1989, 28, 610-612.	0.7	25
198	Adenosine modulation of d-[3H]aspartate release in cultured retina cells exposed to oxidative stress. Neurochemistry International, 2000, 36, 255-265.	1.9	25

#	Article	IF	CITATIONS
199	Binding of adenosine receptor ligands to brain of adenosine receptor knock-out mice: evidence that CCS 21680 binds to A1 receptors in hippocampus. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 270-278.	1.4	25
200	Adenosine A ₁ receptors control the metabolic recovery after hypoxia in rat hippocampal slices. Journal of Neurochemistry, 2016, 136, 947-957.	2.1	23
201	Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices. Scientific Reports, 2021, 11, 10488.	1.6	23
202	Chapter 15 Adenine nucleotides as inhibitors of synaptic transmission: Role of localised ectonucleotidases. Progress in Brain Research, 1999, 120, 183-192.	0.9	22
203	Short-Term Plasticity of Kainate Receptor-Mediated EPSCs Induced by NMDA Receptors at Hippocampal Mossy Fiber Synapses. Journal of Neuroscience, 2007, 27, 3987-3993.	1.7	22
204	High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus. Neuroscience, 2016, 315, 196-205.	1.1	22
205	Chronic coffee consumption and respiratory disease: A systematic review. Clinical Respiratory Journal, 2018, 12, 1283-1294.	0.6	22
206	Treadmill Exercise Attenuates I-DOPA-Induced Dyskinesia and Increases Striatal Levels of Glial Cell-Derived Neurotrophic Factor (GDNF) in Hemiparkinsonian Mice. Molecular Neurobiology, 2019, 56, 2944-2951.	1.9	22
207	Adenosine A ₁ and A _{2A} receptors differently control synaptic plasticity in the mouse dorsal and ventral hippocampus. Journal of Neurochemistry, 2019, 151, 227-237.	2.1	22
208	Crosstalk Between ATP-P2X7 and Adenosine A2A Receptors Controlling Neuroinflammation in Rats Subject to Repeated Restraint Stress. Frontiers in Cellular Neuroscience, 2021, 15, 639322.	1.8	22
209	Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription. Journal of Clinical Investigation, 2022, 132, .	3.9	22
210	Association Between Adenosine A2A Receptors and Connexin 43 Regulates Hemichannels Activity and ATP Release in Astrocytes Exposed to Amyloid-β Peptides. Molecular Neurobiology, 2021, 58, 6232-6248.	1.9	21
211	Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life. Behavioural Brain Research, 2016, 303, 76-84.	1.2	19
212	The Association of Amyloid-β Protein Precursor With α- and β-Secretases in Mouse Cerebral Cortex Synapses Is Altered in Early Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 5710-5721.	1.9	19
213	Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia. Annals of Neurology, 2017, 81, 407-418.	2.8	19
214	Adenosine A _{2A} receptors modulate the dopamine D ₂ receptorâ€mediated inhibition of synaptic transmission in the mouse prefrontal cortex. European Journal of Neuroscience, 2018, 47, 1127-1134.	1.2	19
215	Caffeine Controls Glutamatergic Synaptic Transmission and Pyramidal Neuron Excitability in Human Neocortex. Frontiers in Pharmacology, 2017, 8, 899.	1.6	19
216	Astrocytes and Adenosine A2A Receptors: Active Players in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 666710.	1.4	19

#	Article	IF	CITATIONS
217	Adenosine A2A Receptors Contribute to the Radial Migration of Cortical Projection Neurons through the Regulation of Neuronal Polarization and Axon Formation. Cerebral Cortex, 2021, 31, 5652-5663.	1.6	19
218	Activation of microglia bolsters synapse formation. Frontiers in Cellular Neuroscience, 2014, 8, 153.	1.8	18
219	Effects of Carbamazepine and Novel 10,11-Dihydro-5H -Dibenz[b,f]Azepine-5-Carboxamide Derivatives on Synaptic Transmission in Rat Hippocampal Slices. Basic and Clinical Pharmacology and Toxicology, 2002, 90, 208-213.	0.0	17
220	Interaction Between P2X and Nicotinic Acetylcholine Receptors in Glutamate Nerve Terminals of the Rat Hippocampus. Journal of Molecular Neuroscience, 2006, 30, 173-176.	1.1	17
221	N-acyldopamines control striatal input terminals via novel ligand-gated cation channels. Neuropharmacology, 2009, 56, 676-683.	2.0	17
222	Elevated Pressure Changes the Purinergic System of Microglial Cells. Frontiers in Pharmacology, 2018, 9, 16.	1.6	17
223	Synaptic and Sub-Synaptic Localization of Amyloid-β Protein Precursor in the Rat Hippocampus. Journal of Alzheimer's Disease, 2014, 40, 981-992.	1.2	16
224	Distinct sensitivity to caffeine-induced insomnia related to age. Journal of Psychopharmacology, 2018, 32, 89-95.	2.0	16
225	Adenosine A2A Receptors in the Rat Prelimbic Medial Prefrontal Cortex Control Delay-Based Cost-Benefit Decision Making. Frontiers in Molecular Neuroscience, 2018, 11, 475.	1.4	16
226	Microglia cytoarchitecture in the brain of adenosine A _{2A} receptor knockout mice: Brain region and sex specificities. European Journal of Neuroscience, 2020, 51, 1377-1387.	1.2	16
227	Effect of free radicals on adenosine A2A and dopamine D2 receptors in the striatum of young adult and aged rats. Neurochemistry International, 2004, 45, 733-738.	1.9	15
228	Cellular prion protein is present in dopaminergic neurons and modulates the dopaminergic system. European Journal of Neuroscience, 2014, 40, 2479-2486.	1.2	15
229	Validation of an LC-MS/MS Method for the Quantification of Caffeine and Theobromine Using Non-Matched Matrix Calibration Curve. Molecules, 2019, 24, 2863.	1.7	15
230	Adenosine A2A Receptors as Biomarkers of Brain Diseases. Frontiers in Neuroscience, 2021, 15, 702581.	1.4	15
231	Adenosine A3 receptors in the rat hippocampus: Lack of interaction with A1 receptors. Drug Development Research, 2003, 58, 428-438.	1.4	14
232	Subsynaptic localization of nicotinic acetylcholine receptor subunits: A comparative study in the mouse and rat striatum. Neuroscience Letters, 2014, 566, 106-110.	1.0	14
233	Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 2016, 105, 241-257.	2.0	14
234	Mitochondria in Excitatory and Inhibitory Synapses have Similar Susceptibility to Amyloid-β Peptides Modeling Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 525-536.	1.2	14

#	Article	IF	CITATIONS
235	Increased ATP release and CD73-mediated adenosine A2A receptor activation mediate convulsion-associated neuronal damage and hippocampal dysfunction. Neurobiology of Disease, 2021, 157, 105441.	2.1	14
236	Parkinson's disease-associated GPR37 receptor regulates cocaine-mediated synaptic depression in corticostriatal synapses. Neuroscience Letters, 2017, 638, 162-166.	1.0	13
237	Caffeine Consumption plus Physical Exercise Improves Behavioral Impairments and Stimulates Neuroplasticity in Spontaneously Hypertensive Rats (SHR): an Animal Model of Attention Deficit Hyperactivity Disorder. Molecular Neurobiology, 2020, 57, 3902-3919.	1.9	13
238	Use of knockout mice to explore CNS effects of adenosine. Biochemical Pharmacology, 2021, 187, 114367.	2.0	13
239	Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells. Experimental Eye Research, 2000, 70, 577-587.	1.2	12
240	Tonic adenosine neuromodulation is preserved in motor nerve endings of aged rats. Neurochemistry International, 2000, 36, 563-566.	1.9	12
241	Hierarchical glucocorticoid-endocannabinoid interplay regulates the activation of the nucleus accumbens by insulin. Brain Research Bulletin, 2016, 124, 222-230.	1.4	12
242	Methamphetamine Induces Anhedonicâ€Like Behavior and Impairs Frontal Cortical Energetics in Mice. CNS Neuroscience and Therapeutics, 2017, 23, 119-126.	1.9	12
243	ATP Signaling Controlling Dyskinesia Through P2X7 Receptors. Frontiers in Molecular Neuroscience, 2020, 13, 111.	1.4	12
244	Facilitation of GABA release by arachidonic acid in rat hippocampal synaptosomes. European Journal of Neuroscience, 1999, 11, 2171-2174.	1.2	11
245	Adenosine A 2A receptors are up-regulated and control the activation of human alveolar macrophages. Pulmonary Pharmacology and Therapeutics, 2017, 45, 90-94.	1.1	11
246	Adenosine A2A receptors format long-term depression and memory strategies in a mouse model of Angelman syndrome. Neurobiology of Disease, 2020, 146, 105137.	2.1	11
247	Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome. Molecules, 2022, 27, 1489.	1.7	11
248	Adenosine receptor interactions in the hippocampus. Drug Development Research, 2001, 52, 337-345.	1.4	10
249	Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. Purinergic Signalling, 2017, 13, 179-190.	1.1	10
250	Signaling by adenosine receptors—Homeostatic or allostatic control?. PLoS Biology, 2019, 17, e3000213.	2.6	10
251	Chronic adenosine A _{2A} receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37â€deficient mice. Journal of Neurochemistry, 2019, 148, 796-809.	2.1	10
252	Role of The Purinergic Neuromodulation System in Epilepsy. The Open Neuroscience Journal, 2010, 4, 64-83.	0.8	10

#	Article	IF	CITATIONS
253	On slices, synaptosomes and dissociated neurones to study in vitro ageing physiology. Trends in Neurosciences, 1998, 21, 286.	4.2	9
254	Diadenosine polyphosphates facilitate the evoked release of acetylcholine from rat hippocampal nerve terminals. Brain Research, 2000, 879, 50-54.	1.1	9
255	Lack of presynaptic interaction between glucocorticoid and CB1 cannabinoid receptors in GABA- and glutamatergic terminals in the frontal cortex of laboratory rodents. Neurochemistry International, 2015, 90, 72-84.	1.9	9
256	The Coffee–Acrylamide Apparent Paradox: An Example of Why the Health Impact of a Specific Compound in a Complex Mixture Should Not Be Evaluated in Isolation. Nutrients, 2020, 12, 3141.	1.7	9
257	Candida Extracellular Nucleotide Metabolism Promotes Neutrophils Extracellular Traps Escape. Frontiers in Cellular and Infection Microbiology, 2021, 11, 678568.	1.8	9
258	Presynaptic kainate receptors modulating glutamatergic transmission in the rat hippocampus are inhibited by arachidonic acid. Neurochemistry International, 2004, 44, 371-379.	1.9	8
259	Age-Related Changes in the Synaptic Density of Amyloid-β Protein Precursor and Secretases in the Human Cerebral Cortex. Journal of Alzheimer's Disease, 2016, 52, 1209-1214.	1.2	8
260	Promises of Caffeine in Attention-Deficit/Hyperactivity Disorder: From Animal Models to Clinical Practice. Journal of Caffeine and Adenosine Research, 2018, 8, 131-142.	0.8	8
261	What is the extracellular calcium concentration within brain synapses?. Journal of Neurochemistry, 2019, 149, 435-437.	2.1	8
262	Overactivity of neuronal adenosine A2A receptors accelerates neurodegeneration. Brain, 2019, 142, 3323-3324.	3.7	7
263	Control of NMDA Receptor-Mediated Currents by Adenosine A1 and A2A Receptors Within the Basolateral Amygdala. Journal of Caffeine and Adenosine Research, 2020, 10, 61-70.	0.8	7
264	<scp>l</scp> â€i±â€aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory. FASEB Journal, 2021, 35, e21726.	0.2	7
265	Deletion of CD73 increases exercise power in mice. Purinergic Signalling, 2021, 17, 393-397.	1.1	6
266	Motor Deficits Coupled to Cerebellar and Striatal Alterations in Ube3amâ^'/p+ Mice Modelling Angelman Syndrome Are Attenuated by Adenosine A2A Receptor Blockade. Molecular Neurobiology, 2021, 58, 2543-2557.	1.9	6
267	Opposite Modulation of Peripheral Inflammation and Neuroinflammation by Adenosine A2A Receptors. , 2007, , 53-79.		6
268	Hippocampal long-term potentiation in adult mice after recovery from ketamine anesthesia. Lab Animal, 2014, 43, 353-357.	0.2	5
269	Characterization of extracellular nucleotide metabolism in <i>Candida albicans</i> . FEMS Microbiology Letters, 2016, 363, fnv212.	0.7	5
270	Adenosine Receptors in Alzheimer's Disease. , 2018, , 259-280.		5

Adenosine Receptors in Alzheimer's Disease. , 2018, , 259-280. 270

#	Article	IF	CITATIONS
271	Prolonged caffeine intake decreases alveolar bone damage induced by binge-like ethanol consumption in adolescent female rats. Biomedicine and Pharmacotherapy, 2020, 130, 110608.	2.5	5
272	Binge‣ike Exposure During Adolescence Induces Detrimental Effects in Alveolar Bone that Persist in Adulthood. Alcoholism: Clinical and Experimental Research, 2021, 45, 56-63.	1.4	5
273	Clustering of adenosine A _{2B} receptors with ectonucleotidases in caveolinâ€rich lipid rafts underlies immunomodulation by <i>Leishmania amazonensis</i> . FASEB Journal, 2021, 35, e21509.	0.2	5
274	Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly. Oncotarget, 2016, 7, 62862-62872.	0.8	5
275	Impact of blunting astrocyte activity on hippocampal synaptic plasticity in a mouse model of early Alzheimer's disease based on amyloidâ€Î² peptide exposure. Journal of Neurochemistry, 2022, , .	2.1	5
276	Adenosine A2A receptors blockade attenuates dexamethasone-induced alterations in cultured astrocytes. Purinergic Signalling, 2022, 18, 199-204.	1.1	5
277	Purinoceptors and synaptic plasticity. Drug Development Research, 1996, 39, 353-360.	1.4	4
278	Cellular prion protein (PrPC) modulates ethanol-induced behavioral adaptive changes in mice. Behavioural Brain Research, 2014, 271, 325-332.	1.2	4
279	Brain Membrane Fractionation: An Ex Vivo Approach to Assess Subsynaptic Protein Localization. Journal of Visualized Experiments, 2017, , .	0.2	4
280	Metabotropic glutamate type 5 receptor requires contactin-associated protein 1 to control memory formation. Human Molecular Genetics, 2018, 27, 3528-3541.	1.4	4
281	Subsynaptic Membrane Fractionation. Neuromethods, 2016, , 31-37.	0.2	4
282	Simultaneous Alteration of the Circadian Variation of Memory, Hippocampal Synaptic Plasticity, and Metabolism in a Triple Transgenic Mouse Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 835885.	1.7	4
283	Extracellular metabolism and function of purines in immunoisolated cholinergic nerve terminals. Neurochemistry International, 1992, 21, Q10.	1.9	3
284	ECTO-ATPase activity in cholinergic nerve terminals of the hippocampus and of the cerebral cortex of the rat. Neurochemistry International, 1992, 21, A12.	1.9	3
285	A Preliminary Study on the Effect of Caffeine Consumption on the Evolution of Sarcoidosis. Journal of Caffeine Research, 2011, 1, 206-212.	1.0	3
286	The Effects of Different Concentrations of the α2-Adrenoceptor Agonist Medetomidine on Basal Excitatory Synaptic Transmission and Synaptic Plasticity in Hippocampal Slices of Adult Mice. Anesthesia and Analgesia, 2015, 120, 1130-1137.	1.1	3
287	Caffeine consumption and exacerbations of chronic obstructive pulmonary disease: Retrospective study. Revista Portuguesa De Pneumologia, 2015, 21, 271-275.	0.7	3
288	An optimized spectrophotometric assay reveals increased activity of enzymes involved in 2â€arachidonoyl glycerol turnover in the cerebral cortex of a rat model of Alzheimer's disease. European Journal of Neuroscience, 2022, 55, 1051-1062.	1.2	3

#	Article	IF	CITATIONS
289	Transient gain of function of cannabinoid CB1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes. Brain Research Bulletin, 2020, 161, 106-115.	1.4	3
290	G protein-coupled receptor 37 (GPR37) emerges as an important modulator of adenosinergic transmission in the striatum. Neural Regeneration Research, 2019, 14, 1912.	1.6	3
291	Caffeine Consumption in Patients with Obstructive Sleep Apnea: Retrospective Study. Journal of Caffeine Research, 2014, 4, 9-11.	1.0	2
292	Role of Neuropeptide S on Behavioural and Neurochemical Changes of an Animal Model of Attention-Deficit/Hyperactivity Disorder. Neuroscience, 2020, 448, 140-148.	1.1	2
293	Neuroprotective effects of melatonin against neurotoxicity induced by intranasal sodium dimethyldithiocarbamate administration in mice. NeuroToxicology, 2020, 80, 144-154.	1.4	2
294	Exercise decreases aberrant corticostriatal plasticity in an animal model of <scp>l</scp> -DOPA-induced dyskinesia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R541-R546.	0.9	2
295	Blockade of AMP degradation allows the quantification of adenine nucleotides released by nerve stimulation in the innervated frog sartorius muscle. European Journal of Pharmacology, 1990, 183, 1684-1685.	1.7	1
296	M16 D1R and A2AR Blockade Normalises PKA Activity and Improves Hippocampal-dependent Cognitive Dysfunction but not Motor Deficits in Huntington's Disease. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, A99-A100.	0.9	1
297	Role of A2a Receptors in the Hippocampus and Motor Nerve Endings. , 1995, , 251-261.		1
298	Inhibition and excitation by adenosine in the rat hippocampus. Journal of Physiology (Paris), 1994, 88, 410.	2.1	0
299	Meeting Report — Biochemical Education at the University Level, Lisbon, Portugal, October 30âÂ^Â'31, 19 Biochemistry and Molecular Biology Education, 2000, 28, 234-237.	999. 0:5	0
300	Bringing the brain into the test tube: an experiment illustrating the effect of ethanol on nerve terminal viability. Biochemistry and Molecular Biology Education, 2001, 29, 105-109.	0.5	0
301	Bringing the brain into the test tube: an experiment illustrating the effect of ethanol on nerve terminal viability. Biochemistry and Molecular Biology Education, 2001, 29, 105-109.	0.5	0
302	Heteroexchange of purines in the hippocampus: mixing-up or messing-up ATP and adenosine. British Journal of Pharmacology, 2003, 139, 473-474.	2.7	0
303	Astrocytic A2A receptors: Novel targets to manage brain disorders. Porto Biomedical Journal, 2017, 2, 178-179.	0.4	0
304	Subsynaptic Membrane Fractionation. Neuromethods, 2021, , 31-38.	0.2	0
305	Role of Adenosine A2A Receptors in the Control of Neuroinflammation—Relevance for Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 81-99.	0.4	0
306	Adenosine A2A Receptor-Mediated Control of Non-Motor Functions in Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 183-205.	0.4	0