Weizhi Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402200/publications.pdf

Version: 2024-02-01

63	3,360	218677 26 h-index	55
papers	citations		g-index
66	66	66	3919 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. Neurolmage, 2022, 247, 118799.	4.2	4
2	Long- read sequencing and de novo assembly of the cynomolgus macaque genome. Journal of Genetics and Genomics, 2022, , .	3.9	1
3	<i>BRN2</i> as a key gene drives the early primate telencephalon development. Science Advances, 2022, 8, eabl7263.	10.3	3
4	Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium. Cell Regeneration, 2022, 11, 19.	2.6	13
5	Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Research, 2022, 32, 729-743.	12.0	48
6	Mapping developmental paths of monkey primordial germ-like cells differentiation from pluripotent stem cells by single cell ribonucleic acid sequencing analysis. Biology of Reproduction, 2022, 107, 237-249.	2.7	2
7	Primate Organoids and Gene-Editing Technologies toward Next-Generation Biomedical Research. Trends in Biotechnology, 2021, 39, 1332-1342.	9.3	9
8	Chimeric contribution of human extended pluripotent stem cells to monkey embryos exÂvivo. Cell, 2021, 184, 2020-2032.e14.	28.9	85
9	Amnion signals are essential for mesoderm formation in primates. Nature Communications, 2021, 12, 5126.	12.8	59
10	Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease. Npj Biofilms and Microbiomes, 2021, 7, 69.	6.4	24
11	Analysis of developmental imprinting dynamics in primates using SNP-free methods to identify imprinting defects in cloned placenta. Developmental Cell, 2021, 56, 2826-2840.e7.	7.0	12
12	Establishment of porcine and monkey colonic organoids for drug toxicity study. Cell Regeneration, 2021, 10, 32.	2.6	7
13	Strategies for the CRISPR-Based Therapeutics. Trends in Pharmacological Sciences, 2020, 41, 55-65.	8.7	39
14	Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing. Protein and Cell, 2020, 11, 809-824.	11.0	46
15	Interspecies embryo transfer between rhesus and cynomolgus monkeys. Journal of Genetics and Genomics, 2020, 47, 333-336.	3.9	O
16	A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature, 2020, 577, 537-542.	27.8	277
17	Modulation of Wnt and Activin/Nodal supports efficient derivation, cloning and suspension expansion of human pluripotent stem cells. Biomaterials, 2020, 249, 120015.	11.4	15
18	Primate stem cells: bridge the translation from basic research to clinic application. Science China Life Sciences, 2019, 62, 12-21.	4.9	10

#	Article	IF	CITATIONS
19	Socialâ€valenceâ€related increased attention in rett syndrome cynomolgus monkeys: An eyeâ€tracking study. Autism Research, 2019, 12, 1585-1597.	3.8	6
20	Differential motility parameters and identification of proteomic profiles of human sperm cryopreserved with cryostraw and cryovial. Clinical Proteomics, 2019, 16, 24.	2.1	19
21	Gene Delivery to Nonhuman Primate Preimplantation Embryos Using Recombinant Adenoâ€Associated Virus. Advanced Science, 2019, 6, 1900440.	11.2	7
22	Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366, .	12.6	137
23	Improvement of sperm cryo-survival of cynomolgus macaque (Macaca fascicularis) by commercial egg-yolk–free freezing medium with type III antifreeze protein. Animal Reproduction Science, 2019, 210, 106177.	1.5	12
24	Transplantation of human ESC-derived mesenchymal stem cell spheroids ameliorates spontaneous osteoarthritis in rhesus macaques. Theranostics, 2019, 9, 6587-6600.	10.0	31
25	Genome editing in large animals: current status and future prospects. National Science Review, 2019, 6, 402-420.	9.5	63
26	Transgenic rhesus monkeys carrying the human <i>MCPH1</i> gene copies show human-like neoteny of brain development. National Science Review, 2019, 6, 480-493.	9.5	52
27	Histopathological Features and Composition of Gut Microbiota in Rhesus Monkey of Alcoholic Liver Disease. Frontiers in Microbiology, 2019, 10, 165.	3 . 5	15
28	Trio deep-sequencing does not reveal unexpected off-target and on-target mutations in Cas9-edited rhesus monkeys. Nature Communications, 2019, 10, 5525.	12.8	29
29	Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases. BMC Biotechnology, 2019, 19, 7.	3.3	8
30	Recent Advances in Therapeutic Genome Editing in China. Human Gene Therapy, 2018, 29, 136-145.	2.7	5
31	Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Research, 2018, 28, 383-386.	12.0	42
32	Improving Cell Survival in Injected Embryos Allows Primed Pluripotent Stem Cells to Generate Chimeric Cynomolgus Monkeys. Cell Reports, 2018, 25, 2563-2576.e9.	6.4	22
33	Genetic screening and multipotency in rhesus monkey haploid neural progenitor cells. Development (Cambridge), 2018, 145, .	2.5	18
34	No off-target mutations in functional genome regions of a CRISPR/Cas9-generated monkey model of muscular dystrophy. Journal of Biological Chemistry, 2018, 293, 11654-11658.	3.4	29
35	Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discovery, 2018, 4, 28.	4.7	29
36	Interaction of p53 and ASPPs regulates rhesus monkey embryonic stem cells conversion to neural fate concomitant with apoptosis. Cell Cycle, 2018, 17, 1146-1153.	2.6	1

#	Article	IF	Citations
37	Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse. PeerJ, 2018, 6, e4336.	2.0	15
38	De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Research, 2017, 27, 526-539.	12.0	61
39	Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys. Cell, 2017, 169, 945-955.e10.	28.9	158
40	Transabdominal ultrasound-guided multifetal pregnancy reduction in 10 cases of monkeysâ€. Biology of Reproduction, 2017, 97, 758-761.	2.7	1
41	Cryopreservation of cynomolgus macaque (Macaca fascicularis) sperm with glycerol and ethylene glycol, and its effect on sperm-specific ion channels — CatSper and Hv1. Theriogenology, 2017, 104, 37-42.	2.1	12
42	Paving the road for biomedicine: genome editing and stem cells in primates. National Science Review, 2017, 4, 543-549.	9.5	8
43	Vitrification of Rhesus Macaque Mesenchymal Stem Cells and the Effects on Global Gene Expression. Stem Cells International, 2017, 2017, 1-14.	2.5	6
44	Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Scientific Reports, 2016, 6, 34339.	3.3	32
45	A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies. Stem Cell Reports, 2016, 6, 228-242.	4.8	22
46	Conversion of monkey fibroblasts to transplantable telencephalic neuroepithelial stem cells. Biomaterials, 2016, 77, 53-65.	11.4	14
47	Cryopreservation of Cynomolgus Macaque (Macaca fascicularis) Sperm by Using a Commercial Egg-YolkFree Freezing Medium. Journal of the American Association for Laboratory Animal Science, 2016, 55, 744-748.	1.2	4
48	Rhesus monkey model of liver disease reflecting clinical disease progression and hepatic gene expression analysis. Scientific Reports, 2015, 5, 15019.	3.3	16
49	Rho GDIalpha Modulates Rabbit Trophoblast Stem Cell Survival and Migration 1. Biology of Reproduction, 2015, 93, 144.	2.7	3
50	Early Parkinson's disease symptoms in Â-synuclein transgenic monkeys. Human Molecular Genetics, 2015, 24, 2308-2317.	2.9	82
51	Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Research, 2015, 25, 262-265.	12.0	32
52	Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells. Cell Stem Cell, 2015, 17, 116-124.	11.1	109
53	Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials, 2015, 65, 103-114.	11.4	27
54	Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 2015, 24, 3764-3774.	2.9	209

#	Article	IF	Citations
55	CRISPR/Cas9-mediated <i>Dax1</i> knockout in the monkey recapitulates human AHC-HH. Human Molecular Genetics, 2015, 24, 7255-7264.	2.9	71
56	TALEN-Mediated Gene Mutagenesis in Rhesus and Cynomolgus Monkeys. Cell Stem Cell, 2014, 14, 323-328.	11.1	180
57	Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell, 2014, 156, 836-843.	28.9	930
58	Transgenic Nonhuman Primate Models for Human Diseases: Approaches and Contributing Factors. Journal of Genetics and Genomics, 2012, 39, 247-251.	3.9	22
59	The Available Time Window for Embryo Transfer in the Rhesus Monkey (<i><scp>M</scp>acaca) Tj ETQq1 1 0.784</i>	1314 rgBT	/Overlock 1
60	Optimization of Ethylene Glycol Concentrations, Freezing Rates and Holding Times in Liquid Nitrogen Vapor for Cryopreservation of Rhesus Macaque (Macaca mulatta) Sperm. Journal of Veterinary Medical Science, 2011, 73, 717-723.	0.9	10
61	Derivation of Rhesus Monkey Parthenogenetic Embryonic Stem Cells and Its MicroRNA Signature. PLoS ONE, 2011, 6, e25052.	2.5	15
62	Transgenic rhesus monkeys produced by gene transfer into early-cleavage–stage embryos using a simian immunodeficiency virus-based vector. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17663-17667.	7.1	81
63	Effect of glycerol and dimethyl sulfoxide on cryopreservation of rhesus monkey (Macaca mulatta) sperm. American Journal of Primatology, 2004, 62, 301-306.	1.7	34