List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402200/publications.pdf Version: 2024-02-01

<u>\\/ειζμι Ιι</u>

#	Article	IF	CITATIONS
1	Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell, 2014, 156, 836-843.	28.9	930
2	A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature, 2020, 577, 537-542.	27.8	277
3	Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 2015, 24, 3764-3774.	2.9	209
4	TALEN-Mediated Gene Mutagenesis in Rhesus and Cynomolgus Monkeys. Cell Stem Cell, 2014, 14, 323-328.	11.1	180
5	Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys. Cell, 2017, 169, 945-955.e10.	28.9	158
6	Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366, .	12.6	137
7	Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells. Cell Stem Cell, 2015, 17, 116-124.	11.1	109
8	Chimeric contribution of human extended pluripotent stem cells to monkey embryos exÂvivo. Cell, 2021, 184, 2020-2032.e14.	28.9	85
9	Early Parkinson's disease symptoms in Â-synuclein transgenic monkeys. Human Molecular Genetics, 2015, 24, 2308-2317.	2.9	82
10	Transgenic rhesus monkeys produced by gene transfer into early-cleavage–stage embryos using a simian immunodeficiency virus-based vector. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17663-17667.	7.1	81
11	CRISPR/Cas9-mediated <i>Dax1</i> knockout in the monkey recapitulates human AHC-HH. Human Molecular Genetics, 2015, 24, 7255-7264.	2.9	71
12	Genome editing in large animals: current status and future prospects. National Science Review, 2019, 6, 402-420.	9.5	63
13	De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Research, 2017, 27, 526-539.	12.0	61
14	Amnion signals are essential for mesoderm formation in primates. Nature Communications, 2021, 12, 5126.	12.8	59
15	Transgenic rhesus monkeys carrying the human <i>MCPH1</i> gene copies show human-like neoteny of brain development. National Science Review, 2019, 6, 480-493.	9.5	52
16	Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Research, 2022, 32, 729-743.	12.0	48
17	Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing. Protein and Cell, 2020, 11, 809-824.	11.0	46
18	Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Research, 2018, 28, 383-386.	12.0	42

#	Article	IF	CITATIONS
19	Strategies for the CRISPR-Based Therapeutics. Trends in Pharmacological Sciences, 2020, 41, 55-65.	8.7	39
20	Effect of glycerol and dimethyl sulfoxide on cryopreservation of rhesus monkey (Macaca mulatta) sperm. American Journal of Primatology, 2004, 62, 301-306.	1.7	34
21	Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Research, 2015, 25, 262-265.	12.0	32
22	Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Scientific Reports, 2016, 6, 34339.	3.3	32
23	Transplantation of human ESC-derived mesenchymal stem cell spheroids ameliorates spontaneous osteoarthritis in rhesus macaques. Theranostics, 2019, 9, 6587-6600.	10.0	31
24	No off-target mutations in functional genome regions of a CRISPR/Cas9-generated monkey model of muscular dystrophy. Journal of Biological Chemistry, 2018, 293, 11654-11658.	3.4	29
25	Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discovery, 2018, 4, 28.	4.7	29
26	Trio deep-sequencing does not reveal unexpected off-target and on-target mutations in Cas9-edited rhesus monkeys. Nature Communications, 2019, 10, 5525.	12.8	29
27	Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials, 2015, 65, 103-114.	11.4	27
28	Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease. Npj Biofilms and Microbiomes, 2021, 7, 69.	6.4	24
29	Transgenic Nonhuman Primate Models for Human Diseases: Approaches and Contributing Factors. Journal of Genetics and Genomics, 2012, 39, 247-251.	3.9	22
30	A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies. Stem Cell Reports, 2016, 6, 228-242.	4.8	22
31	Improving Cell Survival in Injected Embryos Allows Primed Pluripotent Stem Cells to Generate Chimeric Cynomolgus Monkeys. Cell Reports, 2018, 25, 2563-2576.e9.	6.4	22
32	Differential motility parameters and identification of proteomic profiles of human sperm cryopreserved with cryostraw and cryovial. Clinical Proteomics, 2019, 16, 24.	2.1	19
33	Genetic screening and multipotency in rhesus monkey haploid neural progenitor cells. Development (Cambridge), 2018, 145, .	2.5	18
34	The Available Time Window for Embryo Transfer in the Rhesus Monkey (<i><scp>M</scp>acaca) Tj ETQq0 0 0 rg</i>	BT ₁ Overlo	ck_10 Tf 50 1
	Rhesus monkey model of liver disease reflecting clinical disease progression and henatic gene		

	expression analysis. Scientific Reports, 2015, 5, 15019.		
36	Histopathological Features and Composition of Gut Microbiota in Rhesus Monkey of Alcoholic Liver Disease. Frontiers in Microbiology, 2019, 10, 165.	3.5	15

#	Article	IF	CITATIONS
37	Modulation of Wnt and Activin/Nodal supports efficient derivation, cloning and suspension expansion of human pluripotent stem cells. Biomaterials, 2020, 249, 120015.	11.4	15
38	Derivation of Rhesus Monkey Parthenogenetic Embryonic Stem Cells and Its MicroRNA Signature. PLoS ONE, 2011, 6, e25052.	2.5	15
39	Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse. PeerJ, 2018, 6, e4336.	2.0	15
40	Conversion of monkey fibroblasts to transplantable telencephalic neuroepithelial stem cells. Biomaterials, 2016, 77, 53-65.	11.4	14
41	Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium. Cell Regeneration, 2022, 11, 19.	2.6	13
42	Cryopreservation of cynomolgus macaque (Macaca fascicularis) sperm with glycerol and ethylene glycol, and its effect on sperm-specific ion channels — CatSper and Hv1. Theriogenology, 2017, 104, 37-42.	2.1	12
43	Improvement of sperm cryo-survival of cynomolgus macaque (Macaca fascicularis) by commercial egg-yolk–free freezing medium with type III antifreeze protein. Animal Reproduction Science, 2019, 210, 106177.	1.5	12
44	Analysis of developmental imprinting dynamics in primates using SNP-free methods to identify imprinting defects in cloned placenta. Developmental Cell, 2021, 56, 2826-2840.e7.	7.0	12
45	Optimization of Ethylene Glycol Concentrations, Freezing Rates and Holding Times in Liquid Nitrogen Vapor for Cryopreservation of Rhesus Macaque (Macaca mulatta) Sperm. Journal of Veterinary Medical Science, 2011, 73, 717-723.	0.9	10
46	Primate stem cells: bridge the translation from basic research to clinic application. Science China Life Sciences, 2019, 62, 12-21.	4.9	10
47	Primate Organoids and Gene-Editing Technologies toward Next-Generation Biomedical Research. Trends in Biotechnology, 2021, 39, 1332-1342.	9.3	9
48	Paving the road for biomedicine: genome editing and stem cells in primates. National Science Review, 2017, 4, 543-549.	9.5	8
49	Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases. BMC Biotechnology, 2019, 19, 7.	3.3	8
50	Gene Delivery to Nonhuman Primate Preimplantation Embryos Using Recombinant Adenoâ€Associated Virus. Advanced Science, 2019, 6, 1900440.	11.2	7
51	Establishment of porcine and monkey colonic organoids for drug toxicity study. Cell Regeneration, 2021, 10, 32.	2.6	7
52	Vitrification of Rhesus Macaque Mesenchymal Stem Cells and the Effects on Global Gene Expression. Stem Cells International, 2017, 2017, 1-14.	2.5	6
53	Socialâ€valenceâ€related increased attention in rett syndrome cynomolgus monkeys: An eyeâ€tracking study. Autism Research, 2019, 12, 1585-1597.	3.8	6
54	Recent Advances in Therapeutic Genome Editing in China. Human Gene Therapy, 2018, 29, 136-145.	2.7	5

#	Article	IF	CITATIONS
55	Cryopreservation of Cynomolgus Macaque (Macaca fascicularis) Sperm by Using a Commercial Egg-YolkFree Freezing Medium. Journal of the American Association for Laboratory Animal Science, 2016, 55, 744-748.	1.2	4
56	Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. NeuroImage, 2022, 247, 118799.	4.2	4
57	Rho GDIalpha Modulates Rabbit Trophoblast Stem Cell Survival and Migration1. Biology of Reproduction, 2015, 93, 144.	2.7	3
58	<i>BRN2</i> as a key gene drives the early primate telencephalon development. Science Advances, 2022, 8, eabl7263.	10.3	3
59	Mapping developmental paths of monkey primordial germ-like cells differentiation from pluripotent stem cells by single cell ribonucleic acid sequencing analysis. Biology of Reproduction, 2022, 107, 237-249.	2.7	2
60	Transabdominal ultrasound-guided multifetal pregnancy reduction in 10 cases of monkeysâ€. Biology of Reproduction, 2017, 97, 758-761.	2.7	1
61	Interaction of p53 and ASPPs regulates rhesus monkey embryonic stem cells conversion to neural fate concomitant with apoptosis. Cell Cycle, 2018, 17, 1146-1153.	2.6	1
62	Long- read sequencing and de novo assembly of the cynomolgus macaque genome. Journal of Genetics and Genomics, 2022, , .	3.9	1
63	Interspecies embryo transfer between rhesus and cynomolgus monkeys. Journal of Genetics and Genomics, 2020, 47, 333-336.	3.9	0