
Guido Grundmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8402196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of surface activation on the microporosity of PEâ€CVD and PEâ€ALD SiO _{<i>x</i>} thin films on PDMS. Plasma Processes and Polymers, 2022, 19, .	1.6	5
2	Influence of hydrogel coatings on corrosion and fatigue of iron in simulated body fluid. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 1034-1044.	0.8	1
3	Oxide Modified Iron in Electron Beam Powder Bed Fusion—From Processability to Corrosion Properties. , 2022, 1, 31-53.		2
4	Corrosion fatigue behavior of electron beam melted iron in simulated body fluid. Npj Materials Degradation, 2022, 6, .	2.6	4
5	Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate. International Journal of Molecular Sciences, 2022, 23, 2817.	1.8	8
6	Environmentâ€Dependent Stability and Mechanical Properties of DNA Origami Sixâ€Helix Bundles with Different Crossover Spacings. Small, 2022, 18, e2107393.	5.2	29
7	The HSP40 chaperone Ydj1 drives amyloid beta 42 toxicity. EMBO Molecular Medicine, 2022, 14, e13952.	3.3	16
8	Anion-specific structure and stability of guanidinium-bound DNA origami. Computational and Structural Biotechnology Journal, 2022, 20, 2611-2623.	1.9	6
9	Comparative analysis of hexamethyldisiloxane and hexamethyldisilazane plasma polymer thin films before and after plasma oxidation. Plasma Processes and Polymers, 2022, 19, .	1.6	7
10	Effect of nanoscale surface topography on the adsorption of globular proteins. Applied Surface Science, 2021, 535, 147671.	3.1	21
11	Adsorption of SARSâ€CoVâ€2 Spike Protein S1 at Oxide Surfaces Studied by High peed Atomic Force Microscopy. Advanced NanoBiomed Research, 2021, 1, 2000024.	1.7	11
12	Protein Adsorption at Nanorough Titanium Oxide Surfaces: The Importance of Surface Statistical Parameters beyond Surface Roughness. Nanomaterials, 2021, 11, 357.	1.9	23
13	Adsorption of SARSâ€CoVâ€2 Spike Protein S1 at Oxide Surfaces Studied by Highâ€ S peed Atomic Force Microscopy. Advanced NanoBiomed Research, 2021, 1, 2170023.	1.7	7
14	Nanoscale Surface Topography Modulates hIAPP Aggregation Pathways at Solid–Liquid Interfaces. International Journal of Molecular Sciences, 2021, 22, 5142.	1.8	7
15	Review of infrared spectroscopy techniques for the determination of internal structure in thin SiO2 films. Vibrational Spectroscopy, 2021, 114, 103256.	1.2	10
16	Scaling Up DNA Origami Lattice Assembly. Chemistry - A European Journal, 2021, 27, 8564-8571.	1.7	25
17	Frontispiece: Scaling Up DNA Origami Lattice Assembly. Chemistry - A European Journal, 2021, 27, .	1.7	0
18	Strain-Dependent Adsorption of Pseudomonas aeruginosa-Derived Adhesin-Like Peptides at Abiotic Surfaces. Micro, 2021, 1, 129-139.	0.9	4

2

GUIDO GRUNDMEIER

#	Article	IF	CITATIONS
19	Magnesium-Free Immobilization of DNA Origami Nanostructures at Mica Surfaces for Atomic Force Microscopy. Molecules, 2021, 26, 4798.	1.7	7
20	Protein-Assisted Room-Temperature Assembly of Rigid, Immobile Holliday Junctions and Hierarchical DNA Nanostructures. Molecules, 2020, 25, 5099.	1.7	1
21	Arranging Small Molecules with Subnanometer Precision on DNA Origami Substrates for the Singleâ€Molecule Investigation of Protein–Ligand Interactions. Small Structures, 2020, 1, 2000038.	6.9	31
22	Self-assembly of highly ordered DNA origami lattices at solid-liquid interfaces by controlling cation binding and exchange. Nano Research, 2020, 13, 3142-3150.	5.8	26
23	Quantitative Assessment of Tip Effects in Singleâ€Molecule Highâ€Speed Atomic Force Microscopy Using DNA Origami Substrates. Angewandte Chemie - International Edition, 2020, 59, 14336-14341.	7.2	6
24	Quantitative Assessment of Tip Effects in Singleâ€Molecule Highâ€Speed Atomic Force Microscopy Using DNA Origami Substrates. Angewandte Chemie, 2020, 132, 14442-14447.	1.6	2
25	Cryopreservation of DNA Origami Nanostructures. Small, 2020, 16, e1905959.	5.2	37
26	Dynamics of lattice defects in mixed DNA origami monolayers. Nanoscale, 2020, 12, 9733-9743.	2.8	10
27	Enhancing the stability of DNA origami nanostructures: staple strand redesign <i>versus</i> enzymatic ligation. Nanoscale, 2019, 11, 16270-16276.	2.8	40
28	Effect of Terminal Modifications on the Adsorption and Assembly of hIAPP(20–29). ACS Omega, 2019, 4, 2649-2660.	1.6	11
29	Dependance of Poly(acrylic acid) Interfacial Adhesion on the Nanostructure of Electrodeposited ZnO Films. ACS Applied Nano Materials, 2019, 2, 831-843.	2.4	16
30	Realâ€Time Observation of Superstructureâ€Dependent DNA Origami Digestion by DNaseâ€I Using High‧pe Atomic Force Microscopy. ChemBioChem, 2019, 20, 2818-2823.	$ed_{1.3}$	66
31	Low-Temperature Plasma-Enhanced Atomic Layer Deposition of Tin(IV) Oxide from a Functionalized Alkyl Precursor: Fabrication and Evaluation of SnO ₂ -Based Thin-Film Transistor Devices. ACS Applied Materials & Interfaces, 2019, 11, 3169-3180.	4.0	33
32	Adsorption and Fibrillization of Islet Amyloid Polypeptide at Self-Assembled Monolayers Studied by QCM-D, AFM, and PM-IRRAS. Langmuir, 2018, 34, 3517-3524.	1.6	31
33	PEALD of SiO ₂ and Al ₂ O ₃ Thin Films on Polypropylene: Investigations of the Film Growth at the Interface, Stress, and Gas Barrier Properties of Dyads. ACS Applied Materials & Interfaces, 2018, 10, 7422-7434.	4.0	37
34	A combinatorial approach to enhance barrier properties of thin films on polymers: Seeding and capping of PECVD thin films by PEALD. Plasma Processes and Polymers, 2018, 15, 1700209.	1.6	12
35	Water assisted atomic layer deposition of yttrium oxide using tris(<i>N</i> , <i>N</i> ′-diisopropyl-2-dimethylamido-guanidinato) yttrium(<scp>iii</scp>): process development, film characterization and functional properties. RSC Advances, 2018, 8, 4987-4994.	1.7	38
36	Dynamics of DNA Origami Lattice Formation at Solid–Liquid Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 44844-44853.	4.0	43

GUIDO GRUNDMEIER

#	Article	IF	CITATIONS
37	Pharmacophore Nanoarrays on DNA Origami Substrates as a Singleâ€Molecule Assay for Fragmentâ€Based Drug Discovery. Angewandte Chemie - International Edition, 2018, 57, 14873-14877.	7.2	36
38	Pharmacophore Nanoarrays on DNA Origami Substrates as a Singleâ€Molecule Assay for Fragmentâ€Based Drug Discovery. Angewandte Chemie, 2018, 130, 15089-15093.	1.6	12
39	On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays. Langmuir, 2018, 34, 14757-14765.	1.6	22
40	On the Stability of DNA Origami Nanostructures in Lowâ€Magnesium Buffers. Angewandte Chemie - International Edition, 2018, 57, 9470-9474.	7.2	168
41	Directed Protein Adsorption Through DNA Origami Masks. Methods in Molecular Biology, 2018, 1811, 253-262.	0.4	2
42	Superstructure-Dependent Loading of DNA Origami Nanostructures with a Groove-Binding Drug. ACS Omega, 2018, 3, 9441-9448.	1.6	42
43	<i>In situ</i> PMâ€IRRAS studies of organothiols and organosilane monolayers–ZnO interfaces at high water activities. Surface and Interface Analysis, 2017, 49, 71-74.	0.8	10
44	Cationâ€Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride. Small, 2017, 13, 1702100.	5.2	32
45	Deformation behavior of nanocrystalline titania particles accessed by complementary inÂsitu electron microscopy techniques. Journal of the American Ceramic Society, 2017, 100, 5709-5722.	1.9	15
46	Unearthing [3â€{Dimethylamino)propyl]aluminium(III) Complexes as Novel Atomic Layer Deposition (ALD) Precursors for Al ₂ O ₃ : Synthesis, Characterization and ALD Process Development. Chemistry - A European Journal, 2017, 23, 10768-10772.	1.7	15
47	Influence of the Surface and Heat Treatment on the Bond Strength of Galvanized Steel/Aluminum Composites Joined by Plastic Deformation. Advanced Engineering Materials, 2016, 18, 1371-1380.	1.6	18
48	Structural stability of DNA origami nanostructures in the presence of chaotropic agents. Nanoscale, 2016, 8, 10398-10405.	2.8	59
49	Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks. ACS Applied Materials & Interfaces, 2016, 8, 31239-31247.	4.0	52
50	DNA annealing by Redl ² is insufficient for homologous recombination and the additional requirements involve intra- and inter-molecular interactions. Scientific Reports, 2016, 6, 34525.	1.6	15
51	Spectroscopic and Microscopic Investigations of Degradation Processes in Polymer Surfaceâ€Near Regions During the Deposition of SiO _x Films. Plasma Processes and Polymers, 2015, 12, 1002-1009.	1.6	19
52	Inhibition of Interfacial Oxidative Degradation During SiO _x Plasma Polymer Barrier Film Deposition on Model Organic Substrates. Plasma Processes and Polymers, 2015, 12, 392-397.	1.6	22
53	Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2829-2833.	1.1	49
54	Toward a microscopic understanding of the calcium–silicate–hydrates/water interface. Applied Surface Science, 2014, 290, 207-214.	3.1	31

#	Article	IF	CITATIONS
55	Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates. Electrochemistry Communications, 2011, 13, 837-839.	2.3	15
56	Surface-enhanced Raman spectroscopy of the growth of ultra-thin organosilicon plasma polymers on nanoporous Ag/SiO2-bilayer films. Thin Solid Films, 2006, 515, 1266-1274.	0.8	16
57	Interfacial processes during plasma polymer deposition on oxide covered iron. Thin Solid Films, 1999, 352, 119-127.	0.8	38
58	Enhanced corrosion resistance of adhesive/galvanised steel interfaces by nanocrystalline ZnO thin film deposition and molecular adhesion promoting films. Journal of Adhesion, 0, , 1-21.	1.8	3