Xiao-Bing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8401674/publications.pdf

Version: 2024-02-01

		566801	552369
26	697	15	26
papers	citations	h-index	g-index
27	27	27	529
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban Forestry and Urban Greening, 2016, 17, 80-91.	2.3	87
2	Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements. Atmospheric Environment, 2018, 173, 62-71.	1.9	63
3	Regional prediction of ground-level ozone using a hybrid sequence-to-sequence deep learning approach. Journal of Cleaner Production, 2020, 253, 119841.	4.6	59
4	Three-dimensional investigation of ozone pollution in the lower troposphere using an unmanned aerial vehicle platform. Environmental Pollution, 2017, 224, 107-116.	3.7	47
5	Three-dimensional analysis of ozone and PM2.5 distributions obtained by observations of tethered balloon and unmanned aerial vehicle in Shanghai, China. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1189-1203.	1.9	39
6	Characterizing temporal and vertical distribution patterns of traffic-emitted pollutants near an elevated expressway in urban residential areas. Building and Environment, 2020, 172, 106678.	3.0	37
7	Effects of roadside green infrastructure on particle exposure: A focus on cyclists and pedestrians on pathways between urban roads and vegetative barriers. Atmospheric Pollution Research, 2021, 12, 1-12.	1.8	35
8	Long-term trend of ozone in southern China reveals future mitigation strategy for air pollution. Atmospheric Environment, 2022, 269, 118869.	1.9	34
9	Impacts of vegetation on particle concentrations in roadside environments. Environmental Pollution, 2021, 282, 117067.	3.7	30
10	Evaluation of unmanned aerial system in measuring lower tropospheric ozone and fine aerosol particles using portable monitors. Atmospheric Environment, 2020, 222, 117134.	1.9	26
11	An observation approach in evaluation of ozone production to precursor changes during the COVID-19 lockdown. Atmospheric Environment, 2021, 262, 118618.	1.9	25
12	Vertical and horizontal distributions of traffic-related pollutants beside an urban arterial road based on unmanned aerial vehicle observations. Building and Environment, 2021, 187, 107401.	3.0	24
13	Impacts of wind fields on the distribution patterns of traffic emitted particles in urban residential areas. Transportation Research, Part D: Transport and Environment, 2019, 68, 122-136.	3.2	23
14	Development and utilization of hexacopter unmanned aerial vehicle platform to characterize vertical distribution of boundary layer ozone in wintertime. Atmospheric Pollution Research, 2020, 11, 1073-1083.	1.8	21
15	Transport and boundary layer interaction contribution to extremely high surface ozone levels in eastern China. Environmental Pollution, 2021, 268, 115804.	3.7	16
16	The Effect of Nonlocal Vehicle Restriction Policy on Air Quality in Shanghai. Atmosphere, 2018, 9, 299.	1.0	15
17	Vertical Characteristics of Winter Ozone Distribution within the Boundary Layer in Shanghai Based on Hexacopter Unmanned Aerial Vehicle Platform. Sustainability, 2019, 11, 7026.	1.6	15
18	Vertical distributions of boundary-layer ozone and fine aerosol particles during the emission control period of the G20 summit in Shanghai, China. Atmospheric Pollution Research, 2021, 12, 352-364.	1.8	15

#	Article	IF	CITATION
19	Characterizing vertical distribution patterns of PM2.5 in low troposphere of Shanghai city, China: Implications from the perspective of unmanned aerial vehicle observations. Atmospheric Environment, 2021, 265, 118724.	1.9	12
20	Investigating the Role of Meteorological Factors in the Vertical Variation in PM2.5 by Unmanned Aerial Vehicle Measurement. Aerosol and Air Quality Research, 2019, 19, 1493-1507.	0.9	12
21	Assessing the effects of non-local traffic restriction policy on urban air quality. Transport Policy, 2022, 115, 62-74.	3.4	11
22	Vertical Profiles of Volatile Organic Compounds in Suburban Shanghai. Advances in Atmospheric Sciences, 2021, 38, 1177-1187.	1.9	10
23	Impacts of traffic on roadside particle variations in varied temporal scales. Atmospheric Environment, 2021, 253, 118354.	1.9	9
24	Vertical distribution characteristics of particulate matter beside an elevated expressway by unmanned aerial vehicle measurements. Building and Environment, 2021, 206, 108330.	3.0	7
25	Identification of the atmospheric boundary layer structure through vertical distribution of PM2.5 obtained by unmanned aerial vehicle measurements. Atmospheric Environment, 2022, 278, 119084.	1.9	7
26	Interannual variations, sources, and health impacts of the springtime ozone in Shanghai. Environmental Pollution, 2022, 306, 119458.	3.7	6