
Gary E Gibson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8401658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease. Nature Communications, 2022, 13, 159.	5.8	42
2	Selective linkage of mitochondrial enzymes to intracellular calcium stores differs between humanâ€induced pluripotent stem cells, neural stem cells, and neurons. Journal of Neurochemistry, 2021, 156, 867-879.	2.1	2
3	Regulation Post Translational Modifications by Succinylation and Acetylation. , 2021, , 631-640.		0
4	The human brain acetylome reveals that decreased acetylation of mitochondrial proteins associates with Alzheimer's disease. Journal of Neurochemistry, 2021, 158, 282-296.	2.1	11
5	Serum Metabolomic and Lipidomic Profiling Reveals Novel Biomarkers of Efficacy for Benfotiamine in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 13188.	1.8	13
6	Benfotiamine and Cognitive Decline in Alzheimer's Disease: Results of a Randomized Placebo-Controlled Phase IIa Clinical Trial. Journal of Alzheimer's Disease, 2020, 78, 989-1010.	1.2	52
7	Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart. Basic Research in Cardiology, 2020, 115, 53.	2.5	28
8	Succinylation Links Metabolism to Protein Functions. Neurochemical Research, 2019, 44, 2346-2359.	1.6	102
9	Mitochondria/metabolic reprogramming in the formation of neurons from peripheral cells: Cause or consequence and the implications to their utility. Neurochemistry International, 2018, 117, 65-76.	1.9	5
10	Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Human Molecular Genetics, 2018, 27, 2874-2892.	1.4	58
11	Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer's Disease: A Calcinist Point of View. Neurochemical Research, 2017, 42, 1636-1648.	1.6	29
12	Mild metabolic perturbations alter succinylation of mitochondrial proteins. Journal of Neuroscience Research, 2017, 95, 2244-2252.	1.3	32
13	[P2–019]: CLUCOSE METABOLISM AS A THERAPEUTIC TARGET IN ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P611.	0.4	1
14	Reductions in the mitochondrial enzyme αâ€ketoglutarate dehydrogenase complex in neurodegenerative disease – beneficial or detrimental?. Journal of Neurochemistry, 2016, 139, 823-838.	2.1	26
15	Vitamin B1 (thiamine) and dementia. Annals of the New York Academy of Sciences, 2016, 1367, 21-30.	1.8	150
16	Mild mitochondrial metabolic deficits by α-ketoglutarate dehydrogenase inhibition cause prominent changes in intracellular autophagic signaling: Potential role in the pathobiology of Alzheimer's disease. Neurochemistry International, 2016, 96, 32-45.	1.9	27
17	Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington's Disease Patients. PLoS ONE, 2016, 11, e0160384.	1.1	21
18	Abnormalities in the Tricarboxylic Acid Cycle in Huntington Disease and in a Huntington Disease Mouse Model. Journal of Neuropathology and Experimental Neurology, 2015, 74, 527-537.	0.9	36

#	Article	IF	CITATIONS
19	Impaired mitochondrial energy metabolism as a novel risk factor for selective onset and progression of dementia in oldest-old subjects. Neuropsychiatric Disease and Treatment, 2015, 11, 565.	1.0	13
20	The RNA-binding protein HuR is essential for the B cell antibody response. Nature Immunology, 2015, 16, 415-425.	7.0	125
21	Abnormal Glucose Metabolism in Alzheimer's Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches. Neurochemical Research, 2015, 40, 2557-2569.	1.6	30
22	Alphaâ€ketoglutarate dehydrogenase complexâ€dependent succinylation of proteins in neurons and neuronal cell lines. Journal of Neurochemistry, 2015, 134, 86-96.	2.1	96
23	Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry. Metabolic Brain Disease, 2014, 29, 1083-1093.	1.4	8
24	F5-02-01: Can abnormal glucose metabolism lead to the Alzheimer's disease pathologies?. , 2013, 9, P825-P825.		0
25	Abnormal thiamine-dependent processes in Alzheimer's Disease. Lessons from diabetes. Molecular and Cellular Neurosciences, 2013, 55, 17-25.	1.0	69
26	The negative impact of <i>α</i> â€ketoglutarate dehydrogenase complex deficiency on matrix substrateâ€level phosphorylation. FASEB Journal, 2013, 27, 2392-2406.	0.2	57
27	Deficits in the mitochondrial enzyme α-ketoglutarate dehydrogenase lead to Alzheimer's disease-like calcium dysregulation. Neurobiology of Aging, 2012, 33, 1121.e13-1121.e24.	1.5	49
28	Ketoglutarate Dehydrogenase Complex in Neurodegeneration. Oxidative Stress and Disease, 2012, , 433-454.	0.3	0
29	Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. European Neuropsychopharmacology, 2011, 21, 254-260.	0.3	75
30	Upâ€regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miRâ€743a. Journal of Neurochemistry, 2011, 118, 440-448.	2.1	68
31	Brain [Uâ€ ¹³ C]glucose metabolism in mice with decreased αâ€ketoglutarate dehydrogenase complex activity. Journal of Neuroscience Research, 2011, 89, 1997-2007.	1.3	18
32	Inactivation and Reactivation of the Mitochondrial α-Ketoglutarate Dehydrogenase Complex. Journal of Biological Chemistry, 2011, 286, 17640-17648.	1.6	61
33	A Mitocentric View of Alzheimer's Disease Suggests Multi-Faceted Treatments. Journal of Alzheimer's Disease, 2010, 20, S591-S607.	1.2	100
34	Thiamine and Oxidants Interact to Modify Cellular Calcium Stores. Neurochemical Research, 2010, 35, 2107-2116.	1.6	24
35	Cause and consequence: Mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 122-134.	1.8	203
36	Mice deficient in dihydrolipoyl succinyl transferase show increased vulnerability to mitochondrial toxins. Neurobiology of Disease, 2009, 36, 320-330.	2.1	24

#	Article	IF	CITATIONS
37	Mitochondrial dihydrolipoyl succinyltransferase deficiency accelerates amyloid pathology and memory deficit in a transgenic mouse model of amyloid deposition. Free Radical Biology and Medicine, 2009, 47, 1019-1027.	1.3	58
38	Mild reduction in the activity of the αâ€ketoglutarate dehydrogenase complex elevates GABA shunt and glycolysis. Journal of Neurochemistry, 2009, 109, 214-221.	2.1	46
39	Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiology of Aging, 2009, 30, 1587-1600.	1.5	123
40	Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochemistry International, 2009, 54, 111-118.	1.9	438
41	Presenilins Are Enriched in Endoplasmic Reticulum Membranes Associated with Mitochondria. American Journal of Pathology, 2009, 175, 1810-1816.	1.9	328
42	Thiamine Deficiency: A Model of Metabolic Encephalopathy and of Selective Neuronal Vulnerability. , 2009, , 235-260.		3
43	Translocation of Amyloid Precursor Protein C-terminal Fragment(s) to the Nucleus Precedes Neuronal Death due to Thiamine Deficiency-induced Mild Impairment of Oxidative Metabolism. Neurochemical Research, 2008, 33, 1365-1372.	1.6	16
44	Metabolic Impairment Induces Oxidative Stress, Compromises Inflammatory Responses, and Inactivates a Key Mitochondrial Enzyme in Microglia. Journal of Neurochemistry, 2008, 72, 1948-1958.	2.1	124
45	Oxidantâ€induced Changes in Mitochondria and Calcium Dynamics in the Pathophysiology of Alzheimer's Disease. Annals of the New York Academy of Sciences, 2008, 1147, 221-232.	1.8	42
46	Preface. Annals of the New York Academy of Sciences, 2008, 1147, xi-xii.	1.8	8
47	Novel functions of the α-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 229-238.	1.8	55
48	Thiamine-Dependent Processes and Treatment Strategies in Neurodegeneration. Antioxidants and Redox Signaling, 2007, 9, 1605-1620.	2.5	91
49	Oxidative Stress and Transcriptional Regulation in Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2007, 21, 276-291.	0.6	136
50	Responses of the mitochondrial alpha-ketoglutarate dehydrogenase complex to thiamine deficiency may contribute to regional selective vulnerability. Neurochemistry International, 2007, 50, 921-931.	1.9	39
51	Coordination and timing of spine and hip joints during full body reaching tasks. Human Movement Science, 2007, 26, 124-140.	0.6	37
52	Changes in inflammatory processes associated with selective vulnerability following mild impairment of oxidative metabolism. Neurobiology of Disease, 2007, 26, 353-362.	2.1	58
53	Enzyme-Catalyzed Side Reactions with Molecular Oxygen may Contribute to Cell Signaling and Neurodegenerative Diseases. Neurochemical Research, 2007, 32, 871-891.	1.6	44
54	Foreword. Neurochemical Research, 2007, 32, 533-534.	1.6	0

#	Article	IF	CITATIONS
55	Cisplatin-Induced Toxicity Is Associated with Platinum Deposition in Mouse Kidney Mitochondria in Vivo and with Selective Inactivation of the α-Ketoglutarate Dehydrogenase Complex in LLC-PK1 Cells. Biochemistry, 2006, 45, 8959-8971.	1.2	42
56	Phospholipid mass is increased in fibroblasts bearing the Swedish amyloid precursor mutation. Brain Research Bulletin, 2006, 69, 79-85.	1.4	4
57	Peripheral inflammatory mechanisms modulate microglial activation in response to mild impairment of oxidative metabolism. Neurochemistry International, 2006, 49, 548-556.	1.9	25
58	Correlations of disability and biologic alterations in Alzheimer brain and test of significance by a therapeutic trial in humans. Journal of Alzheimer's Disease, 2006, 9, 207-218.	1.2	16
59	Cellular mitochondrial heterogeneity in cultured astrocytes as demonstrated by immunogold labeling of α-ketoglutarate dehydrogenase. Glia, 2006, 53, 225-231.	2.5	47
60	Inhibitors of the α-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons. Journal of Neuroscience Research, 2006, 83, 450-458.	1.3	50
61	The α-Ketoglutarate–Dehydrogenase Complex: A Mediator Between Mitochondria and Oxidative Stress in Neurodegeneration. Molecular Neurobiology, 2005, 31, 043-064.	1.9	154
62	Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. Journal of Neurochemistry, 2005, 92, 302-310.	2.1	51
63	Modification of endoplasmic reticulum Ca2+ stores by select oxidants produces changes reminiscent of those in cells from patients with Alzheimer disease. Free Radical Biology and Medicine, 2005, 39, 979-989.	1.3	18
64	CD40L deletion delays neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. Journal of Neuroimmunology, 2005, 164, 85-92.	1.1	16
65	Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Annals of Neurology, 2005, 57, 695-703.	2.8	519
66	Mitochondrial Aconitase is a Transglutaminase 2 Substrate: Transglutamination is a Probable Mechanism Contributing to High-Molecular-Weight Aggregates of Aconitase and Loss of Aconitase Activity in Huntington Disease Brain. Neurochemical Research, 2005, 30, 1245-1255.	1.6	46
67	Reduction in the E2k Subunit of the α-Ketoglutarate Dehydrogenase Complex Has Effects Independent of Complex Activity. Journal of Biological Chemistry, 2005, 280, 10888-10896.	1.6	36
68	Phosphonate Analogues of α-Ketoglutarate Inhibit the Activity of the α-Ketoglutarate Dehydrogenase Complex Isolated from Brain and in Cultured Cellsâ€. Biochemistry, 2005, 44, 10552-10561.	1.2	80
69	Transglutaminase Activity Is Present in Highly Purified Nonsynaptosomal Mouse Brain and Liver Mitochondriaâ€. Biochemistry, 2005, 44, 7830-7843.	1.2	52
70	CD40–CD40L interactions promote neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. Neurochemistry International, 2005, 47, 204-215.	1.9	29
71	Mitochondrial function in fibroblasts with aging in culture and/or Alzheimer's disease. Neurobiology of Aging, 2005, 26, 839-848.	1.5	32
72	Oxidative stress in Alzheimer's disease. Neurobiology of Aging, 2005, 26, 575-578.	1.5	100

#	Article	IF	CITATIONS
73	α-KETO-ß-METHYL-n-VALERIC ACID DIMINISHES REACTIVE OXYGEN SPECIES AND ALTERS ENDOPLASMIC RETICULUM Ca2+ STORES. Free Radical Biology and Medicine, 2004, 37, 1779-1789.	1.3	25
74	Mitochondrial Enzymes in Schizophrenia. Journal of Molecular Neuroscience, 2004, 24, 315-322.	1.1	45
75	Mitochondrial Enzymes and Endoplasmic Reticulum Calcium Stores as Targets of Oxidative Stress in Neurodegenerative Diseases. Journal of Bioenergetics and Biomembranes, 2004, 36, 335-340.	1.0	53
76	Mitochondrial Heterogeneity Within and Between Different Cell Types. Neurochemical Research, 2004, 29, 651-658.	1.6	21
77	Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3â€nitropropionic acid neurotoxicity. Journal of Neurochemistry, 2004, 88, 1352-1360.	2.1	92
78	Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochemistry International, 2004, 45, 361-369.	1.9	76
79	Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochemistry International, 2004, 45, 1021-1028.	1.9	69
80	Inhibition of ?-ketoglutarate dehydrogenase complex promotes cytochromec release from mitochondria, caspase-3 activation, and necrotic cell death. Journal of Neuroscience Research, 2003, 74, 309-317.	1.3	59
81	Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson's disease. Neurochemistry International, 2003, 43, 129-135.	1.9	96
82	Inhibition of the α-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1637, 119-126.	1.8	53
83	Reversal of Thiamine Deficiency-Induced Neurodegeneration. Journal of Neuropathology and Experimental Neurology, 2003, 62, 195-207.	0.9	88
84	The role of the metabolic lesion in Alzheimer's disease. Journal of Alzheimer's Disease, 2002, 4, 225-232.	1.2	84
85	Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 177-189.	1.8	45
86	Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochemistry International, 2002, 40, 493-504.	1.9	122
87	Oxidative processes in the brain and non-neuronal tissues as biomarkers of Alzheimer s disease. Frontiers in Bioscience - Landmark, 2002, 7, d1007-1015.	3.0	28
88	Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer's disease 1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is a part of a series of reviews on "Causes and Consequences of Oxidative Stress in Alzheimer's Disease.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 32, 1061-1070.	1.3	60
89	Heterogeneous Expression of Transketolase in Rat Brain. Journal of Neurochemistry, 2002, 64, 1034-1044.	2.1	15
90	Regional Reductions of Transketolase in Thiamine-Deficient Rat Brain. Journal of Neurochemistry, 2002, 67, 684-691.	2.1	19

6

#	Article	IF	CITATIONS
91	Selective Changes in Cell Bodies and Growth Cones of Nerve Growth Factor-Differentiated PC12 Cells Induced by Chemical Hypoxia. Journal of Neurochemistry, 2002, 69, 603-611.	2.1	9
92	Immunochemical Characterization of the Deficiency of the α-Ketoglutarate Dehydrogenase Complex in Thiamine-Deficient Rat Brain. Journal of Neurochemistry, 2002, 70, 1143-1150.	2.1	40
93	Abnormalities in oxidative processes in non-neuronal tissues from patients with Alzheimer's disease*. Journal of Alzheimer's Disease, 2001, 3, 329-338.	1.2	36
94	Frontal Lobe Dysfunction in Progressive Supranuclear Palsy. Journal of Neurochemistry, 2001, 74, 878-881.	2.1	95
95	Dopaminergic cell death induced by MPP+, oxidant and specific neurotoxicants shares the common molecular mechanism. Journal of Neurochemistry, 2001, 76, 1010-1021.	2.1	238
96	Metabolic Impairment Elicits Brain Cell Type-Selective Changes in Oxidative Stress and Cell Death in Culture. Journal of Neurochemistry, 2001, 74, 114-124.	2.1	26
97	Mitochondrial impairment in the cerebellum of the patients with progressive supranuclear palsy. Journal of Neuroscience Research, 2001, 66, 1028-1034.	1.3	75
98	Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington's disease. Annals of Neurology, 2001, 50, 112-116.	2.8	79
99	Co-culture with astrocytes or microglia protects metabolically impaired neurons. Mechanisms of Ageing and Development, 2001, 123, 21-27.	2.2	47
100	Quantitative α-Ketoglutarate Dehydrogenase Activity Staining in Brain Sections and in Cultured Cells. Analytical Biochemistry, 2000, 277, 86-93.	1.1	29
101	Inherent Abnormalities in Energy Metabolism in Alzheimer Disease: Interaction with Cerebrovascular Compromise. Annals of the New York Academy of Sciences, 2000, 903, 204-221.	1.8	182
102	Vascular Endothelium Is a Site of Free Radical Production and Inflammation in Areas of Neuronal Loss in Thiamine-deficient Brain. Annals of the New York Academy of Sciences, 2000, 903, 353-356.	1.8	42
103	Dietary restriction attenuates the neuronal loss, induction of heme oxygenase-1 and blood–brain barrier breakdown induced by impaired oxidative metabolism. Brain Research, 2000, 885, 62-69.	1.1	45
104	Vascular Factors Are Critical in Selective Neuronal Loss in an Animal Model of Impaired Oxidative Metabolism. Journal of Neuropathology and Experimental Neurology, 2000, 59, 207-217.	0.9	43
105	Phospholipid composition and levels are not altered in fibroblasts bearing presenilin-1 mutations. Brain Research Bulletin, 2000, 52, 207-212.	1.4	3
106	The α-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochemistry International, 2000, 36, 97-112.	1.9	185
107	Protein-Bound Acrolein. Journal of Neurochemistry, 1999, 72, 751-756.	2.1	358
108	Oxidative Stress and a Key Metabolic Enzyme in Alzheimer Brains, Cultured Cells, and an Animal Model of Chronic Oxidative Deficits. Annals of the New York Academy of Sciences, 1999, 893, 79-94.	1.8	82

#	Article	IF	CITATIONS
109	Inhibition of select mitochondrial enzymes in PC12 cells exposed to S-(1,1,2,2-tetrafluoroethyl)-l-cysteine. Biochemical Pharmacology, 1999, 58, 1557-1565.	2.0	21
110	Cultures of astrocytes and microglia express interleukin 18. Molecular Brain Research, 1999, 67, 46-52.	2.5	166
111	Cerebrometabolic Aspects of Delirium in Relationship to Dementia. Dementia and Geriatric Cognitive Disorders, 1999, 10, 335-338.	0.7	58
112	Oxidative Stress Is Associated with Region-Specific Neuronal Death During Thiamine Deficiency. Journal of Neuropathology and Experimental Neurology, 1999, 58, 946-958.	0.9	120
113	Induction of Nitric Oxide Synthase and Microglial Responses Precede Selective Cell Death Induced by Chronic Impairment of Oxidative Metabolism. American Journal of Pathology, 1998, 153, 599-610.	1.9	85
114	Disturbances of the Blood-Brain Barrier without Expression of Amyloid Precursor Protein- Containing Neuritic Clusters or Neuronal Loss during Late Stages of Thiamine Deficiency in Guinea Pigs. Developmental Neuroscience, 1998, 20, 454-461.	1.0	5
115	Thiamine deficiency alters APP but not presenilin-1 immunoreactivity in vulnerable brain regions. NeuroReport, 1997, 8, 2631-2634.	0.6	10
116	Differential regulation of adenylyl cyclase in fibroblasts from sporadic and familial Alzheimer's disease cases with PS1 and APP mutations. NeuroReport, 1997, 8, 2031-2035.	0.6	14
117	Abnormalities in Alzheimer's Disease Fibroblasts Bearing the APP670/671 Mutation. Neurobiology of Aging, 1997, 18, 573-580.	1.5	48
118	G protein subunit levels in fibroblasts from familial Alzheimer's disease patients: lower levels of the high molecular weight Gsα isoform in patients with decreased β-adrenergic receptor stimulated cAMP formation. Neuroscience Letters, 1997, 232, 33-36.	1.0	12
119	Calcium stores in cultured fibroblasts and their changes with Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1996, 1316, 71-77.	1.8	57
120	Altered oxidation and signal transduction systems in fibroblasts from Alzheimer patients. Life Sciences, 1996, 59, 477-489.	2.0	59
121	Regulation of bradykinin-induced Ins(1,4,5)P3 formation by protein kinase C in human fibroblasts. Life Sciences, 1996, 59, 1533-1543.	2.0	5
122	Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain Research, 1995, 677, 50-60.	1.1	57
123	Mitochondria, Aging, and Neurological Diseases. , 1995, , 95-107.		3
124	The role of signal transduction systems in mediating cell density dependent changes in tyrosine hydroxylase gene expression. Molecular Brain Research, 1995, 33, 254-260.	2.5	12
125	Blood-Brain Barrier Abnormalities in Vulnerable Brain Regions during Thiamine Deficiency. Experimental Neurology, 1995, 134, 64-72.	2.0	67
126	Distribution of the ?-ketoglutarate dehydrogenase complex in rat brain. Journal of Comparative Neurology, 1994, 346, 461-479.	0.9	46

8

#	Article	IF	CITATIONS
127	Selective enrichment of cholinergic neurons with the α-ketoglutarate dehydrogenase complex in rat brain. Neuroscience Letters, 1994, 168, 209-212.	1.0	14
128	Aging and the brain. Current Opinion in Neurology, 1994, 7, 287-293.	1.8	43
129	Use of Cultured Fibroblasts in Elucidating the Pathophysiology and Diagnosis of Alzheimer's Disease ^a . Annals of the New York Academy of Sciences, 1994, 747, 225-244.	1.8	41
130	Molecular Mechanisms of Memory and the Pathophysiology of Alzheimer's Disease. Annals of the New York Academy of Sciences, 1994, 747, 245-255.	1.8	21
131	Synaptosomal plasma and mitochondrial membrane potentials during anoxia. Neuroscience Letters, 1992, 138, 133-136.	1.0	4
132	Cytosolic free calcium in lymphoblasts from young, aged and alzheimer subjects. Mechanisms of Ageing and Development, 1992, 63, 1-9.	2.2	21
133	Cytosolic Free Calcium and Gene Expression During Chemical Hypoxia. Journal of Neurochemistry, 1992, 59, 1836-1843.	2.1	25
134	Cytosolic free calcium and ATP in synaptosomes after ischemia. Life Sciences, 1991, 48, 1439-1445.	2.0	16
135	The Cellular Basis of Delirium and Its Relevance to Age-Related Disorders Including Alzheimer's Disease. International Psychogeriatrics, 1991, 3, 373-395.	0.6	68
136	Cytosolic free calcium concentrations in synaptosomes during histotoxic hypoxia. Neurochemical Research, 1991, 16, 461-467.	1.6	22
137	Acetylcholine formation from glucose following acute choline supplementation. Neurochemical Research, 1991, 16, 1009-1015.	1.6	2
138	Dopamine and serotonin in rat striatum duringin vivo hypoxic-hypoxia. Metabolic Brain Disease, 1989, 4, 143-153.	1.4	46
139	Cytosolic-free calcium and neurotransmitter release with decreased availability of glucose or oxygen. Neurochemical Research, 1989, 14, 437-443.	1.6	54
140	Regionally selective alterations in enzymatic activities and metabolic fluxes during thiamin deficiency. Neurochemical Research, 1989, 14, 17-24.	1.6	33
141	Phosphatidylinositol Metabolism During In Vitro Hypoxia. Journal of Neurochemistry, 1989, 52, 830-835.	2.1	24
142	Causes of cell damage in hypoxia/ischemia, aging and Alzheimer's disease. Neurobiology of Aging, 1989, 10, 608-609.	1.5	11
143	Effects of in vitro hypoxia on depolarization-stimulated accumulation of inositol phosphates in synaptosomes. Life Sciences, 1989, 45, 1443-1449.	2.0	5
144	An in vitro model of anoxic-induced damage in mouse brain. Neurochemical Research, 1988, 13, 9-20.	1.6	14

#	Article	IF	CITATIONS
145	Selective damage in striatum and hippocampus with in vitro anoxia. Neurochemical Research, 1988, 13, 329-335.	1.6	11
146	Changes in cytosolic free calcium with 1,2,3,4-tetrahydro-5-aminoacridine, 4-aminopyridine and 3,4-diaminopyridine. Biochemical Pharmacology, 1988, 37, 4191-4196.	2.0	25
147	Dopamine, Acetylcholine, and Glutamate Interactions in Aging Behavioral and Neurochemical Correlates. Annals of the New York Academy of Sciences, 1988, 515, 191-202.	1.8	30
148	Selective alteration of mouse brain neurotransmitter release with age. Neurobiology of Aging, 1987, 8, 147-152.	1.5	77
149	Authors' response to commentaries. Neurobiology of Aging, 1987, 8, 372-375.	1.5	0
150	Diminished mitogen-induced calcium uptake by lymphocytes from alzheimer patients. Biological Psychiatry, 1987, 22, 1079-1086.	0.7	61
151	Calcium and the aging nervous system. Neurobiology of Aging, 1987, 8, 329-343.	1.5	378
152	Effect of age on behavioral and enzymatic changes during thiamin deficiency. Neurobiology of Aging, 1987, 8, 429-434.	1.5	23
153	Differential alteration of dopamine, acetylcholine, and glutamate release during anoxia and/or 3,4-diaminopyridine treatment. Neurochemical Research, 1987, 12, 1019-1027.	1.6	36
154	Locomotor activity as a predictor of times and dosages for studies of nicotine's neurochemical actions. Pharmacology Biochemistry and Behavior, 1987, 26, 305-312.	1.3	24
155	Human red blood cell choline uptake with age and Alzheimer's disease. Neurobiology of Aging, 1986, 7, 205-209.	1.5	21
156	In vivo brain calcium homeostasis during aging. Mechanisms of Ageing and Development, 1986, 37, 1-12.	2.2	24
157	Automated method to estimate catecholamine and indoleamine content and turnover rates. Biomedical Applications, 1986, 374, 239-249.	1.7	6
158	Monoamine Neurotransmitter Metabolism and Locomotor Activity During Chemical Hypoxia. Journal of Neurochemistry, 1986, 46, 733-738.	2.1	28
159	Effect of Decreased Oxygen on In Vitro Release of Endogenous 3,4-Dihydroxyphenylethylamine from Mouse Striatum. Journal of Neurochemistry, 1986, 47, 1924-1931.	2.1	23
160	Behavioral and neurochemical correlates of morphine and hypoxia interactions. Pharmacology Biochemistry and Behavior, 1986, 24, 1687-1693.	1.3	3
161	Oxidative metabolism and acetylcholine synthesis during acetylpyridine treatment. Neurochemical Research, 1985, 10, 453-467.	1.6	11
162	Subsynaptosomal Calcium Distribution During Hypoxia and 3,4-Diaminopyridine Treatment. Journal of Neurochemistry, 1985, 45, 1779-1790.	2.1	27

#	Article	IF	CITATIONS
163	Oral health in a long-term care institution equipped with a dental service. Community Dentistry and Oral Epidemiology, 1985, 13, 260-263.	0.9	58
164	Subsynaptosomal distribution of calcium during aging and 3,4-diaminopyridine treatment. Neurobiology of Aging, 1985, 6, 297-304.	1.5	52
165	Synaptosomal Calcium Metabolism During Hypoxia and 3,4-Diaminopyridine Treatment. Journal of Neurochemistry, 1984, 42, 248-253.	2.1	43
166	Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochemical Research, 1984, 9, 1039-1049.	1.6	61
167	Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochemical Research, 1984, 9, 803-814.	1.6	136
168	Thiamin antagonists and the release of acetylcholine and norepinephrine from brain slices. Biochemical Pharmacology, 1984, 33, 2325-2327.	2.0	11
169	The pyruvate dehydrogenase complex during aging. Mechanisms of Ageing and Development, 1984, 26, 67-73.	2.2	11
170	A central cholinergic deficit in rats with dietary thiamin deficiency. Neurochemical Pathology, 1983, 1, 125-135.	1.1	3
171	Amelioration of age-related neurochemical and behavioral deficits by 3,4-diaminopyridine. Neurobiology of Aging, 1983, 4, 25-30.	1.5	58
172	Improvement of 8-arm maze performance in aged fischer 344 rats with 3,4-diaminopyridine. Experimental Aging Research, 1983, 9, 211-214.	0.6	68
173	Spontaneous Open-Field Behavior in Thiamin-Deficient Rats. Journal of Nutrition, 1982, 112, 1899-1905.	1.3	14
174	Decreases in the release of acetylcholine in vitro with low oxygen. Biochemical Pharmacology, 1982, 31, 111-115.	2.0	55
175	THE ROLE OF THE CHOLINERGIC SYSTEM IN THIAMIN DEFICIENCY. Annals of the New York Academy of Sciences, 1982, 378, 382-403.	1.8	73
176	Cholinergic Therapy of Abnormal Open-Field Behavior in Thiamin-Deficient Rats. Journal of Nutrition, 1982, 112, 1906-1913.	1.3	21
177	Studies on the Pyruvate Dehydrogenase Complex in Brain with the Arylamine Acetyltransferase-Coupled Assay. Journal of Neurochemistry, 1982, 38, 1627-1636.	2.1	60
178	Brain dysfunction in mild to moderate hypoxia. American Journal of Medicine, 1981, 70, 1247-1254.	0.6	233
179	Neurotransmitter and carbohydrate metabolism during aging and mild hypoxia. Neurobiology of Aging, 1981, 2, 165-172.	1.5	67
180	Oxygen Dependence of Glucose and Acetylcholine Metabolism in Slices and Synaptosomes from Rat Brain. Journal of Neurochemistry, 1981, 37, 305-314.	2.1	60

#	ARTICLE	IF	CITATIONS
181	Impaired Synthesis of Acetylcholine by Mild Hypoxic Hypoxia or Nitrous Oxide. Journal of Neurochemistry, 1981, 36, 28-33.	2.1	180
182	Aging Decreases Oxidative Metabolism and the Release and Synthesis of Acetylcholine. Journal of Neurochemistry, 1981, 37, 978-984.	2.1	216
183	Acetylcholine Synthesis and CO2Production from Variously Labeled Glucose in Rat Brain Slices and Synaptosomes. Journal of Neurochemistry, 1981, 37, 88-94.	2.1	30
184	Decreases in Amino Acid and Acetylcholine Metabolism During Hypoxia. Journal of Neurochemistry, 1981, 37, 192-201.	2.1	104
185	Studies on the metabolic pathway of the acetyl group for acetylcholine synthesis. Biochemical Pharmacology, 1980, 29, 167-174.	2.0	57
186	Proportional inhibition of acetylcholine synthesis accompanying impairment of 3-hydroxybutyrate oxidation in rat brain slices. Biochemical Pharmacology, 1979, 28, 133-139.	2.0	22
187	Protection by tris(hydroxymethyl)-aminomethane against behavioral and neurochemical effects of hypoxia. Biochemical Pharmacology, 1979, 28, 747-750.	2.0	11
188	Genetic Factors in Wernickeâ€Korsakoff Syndrome. Alcoholism: Clinical and Experimental Research, 1979, 3, 126-134.	1.4	40
189	ALTERATIONS IN ACETYLCHOLINE SYNTHESIS AND CYCLIC NUCLEOTIDES IN MILD CEREBRAL HYPOXIA. Journal of Neurochemistry, 1978, 31, 757-760.	2.1	108
190	MEASUREMENT OF ACETYLCHOLINE TURNOVER WITH GLUCOSE USED AS PRECURSOR: EVIDENCE FOR COMPARTMENTATION OF GLUCOSE METABOLISM IN BRAIN. Journal of Neurochemistry, 1978, 30, 71-76.	2.1	50
191	Abnormality of a Thiamine-Requiring Enzyme in Patients with Wernicke-Korsakoff Syndrome. New England Journal of Medicine, 1977, 297, 1367-1370.	13.9	406