
Catherine M Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8401643/publications.pdf Version: 2024-02-01

CATHEDINE M ODEENE

#	Article	IF	CITATIONS
1	Epigenetic mechanisms underpinning sexual dimorphism in lung disease. Epigenomics, 2022, 14, 65-67.	2.1	3
2	Epithelial damage in the cystic fibrosis lung: the role of host and microbial factors. Expert Review of Respiratory Medicine, 2022, 16, 737-748.	2.5	1
3	Increased focus on non-animal models for COVID-19 and non-COVID lung research. European Respiratory Journal, 2021, 57, 2004267.	6.7	2
4	High-Throughput Identification of miRNA–Target Interactions in Melanoma Using miR-CATCHv2.0. Methods in Molecular Biology, 2021, 2265, 487-512.	0.9	0
5	Bronchial Epithelial Cell Transcriptomics: A Tool to Monitor and Predict Chronic Obstructive Pulmonary Disease Progression?. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 399-400.	2.9	1
6	The long-term sequelae of COVID-19: an international consensus on research priorities for patients with pre-existing and new-onset airways disease. Lancet Respiratory Medicine,the, 2021, 9, 1467-1478.	10.7	84
7	miR-224-5p and miR-545-5p Levels Relate to Exacerbations and Lung Function in a Pilot Study of X-Linked MicroRNA Expression in Cystic Fibrosis Monocytes. Frontiers in Genetics, 2021, 12, 739311.	2.3	2
8	The Estrogen-Induced miR-19 Downregulates Secretory Leucoprotease Inhibitor Expression in Monocytes. Journal of Innate Immunity, 2020, 12, 90-102.	3.8	11
9	Innate Immunity of the Lung. Journal of Innate Immunity, 2020, 12, 1-3.	3.8	7
10	Impaired Airway Epithelial Barrier Integrity in Response to Stenotrophomonas maltophilia Proteases, Novel Insights Using Cystic Fibrosis Bronchial Epithelial Cell Secretomics. Frontiers in Immunology, 2020, 11, 198.	4.8	8
11	Challenges facing microRNA therapeutics for cystic fibrosis lung disease. Epigenomics, 2020, 12, 179-181.	2.1	6
12	Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells. Molecular Therapy, 2020, 28, 1190-1199.	8.2	39
13	Alpha-1 Antitrypsin—A Target for MicroRNA-Based Therapeutic Development for Cystic Fibrosis. International Journal of Molecular Sciences, 2020, 21, 836.	4.1	10
14	Respiratory Drug/Vaccine Delivery Using Nanoparticles. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 125-154.	0.6	2
15	An investigation of miR-21 and the TLR4/PDCD4 axis in CF bronchial epithelium. , 2020, , .		1
16	From the pathophysiology of the human lung alveolus to epigenetic editing: Congress 2018 highlights from ERS Assembly 3 "Basic and Translational Science.― ERJ Open Research, 2019, 5, 00194-2018.	2.6	3
17	Characterisation of the Major Extracellular Proteases of Stenotrophomoas maltophilia and Their Effects on Pulmonary Antiproteases. Pathogens, 2019, 8, 92.	2.8	11
18	Transforming Growth Factor-β1 Selectively Recruits microRNAs to the RNA-Induced Silencing Complex and Degrades CFTR mRNA under Permissive Conditions in Human Bronchial Epithelial Cells. International Journal of Molecular Sciences, 2019, 20, 4933.	4.1	14

#	Article	IF	CITATIONS
19	Nebulised lipid–polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Research, 2019, 5, 00161-2018.	2.6	35
20	Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of <i>BRAF</i> -X1 mRNA. RNA Biology, 2019, 16, 865-878.	3.1	10
21	Unmasking the pathological and therapeutic potential of histone deacetylases for liver cancer. Expert Review of Gastroenterology and Hepatology, 2019, 13, 247-256.	3.0	27
22	Cystic fibrosis: a model for precision medicine. Expert Review of Precision Medicine and Drug Development, 2018, 3, 107-117.	0.7	1
23	Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95). Journal of Cystic Fibrosis, 2018, 17, 616-623.	0.7	8
24	Challenges and future direction of molecular research in air pollution-related lung cancers. Lung Cancer, 2018, 118, 69-75.	2.0	51
25	Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. Journal of Innate Immunity, 2018, 10, 487-501.	3.8	101
26	Assembly 3: Basic and Translational Sciences. Breathe, 2018, 14, 67-68.	1.3	0
27	miRâ€CATCH Identifies Biologically Active miRNA Regulators of the Proâ€Survival Gene XIAP, in Chinese Hamster Ovary Cells. Biotechnology Journal, 2018, 13, e1700299.	3.5	7
28	X Chromosome–encoded MicroRNAs Are Functionally Increased in Cystic Fibrosis Monocytes. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 668-670.	5.6	7
29	New players in chronic lung disease identified at the European Respiratory Society International Congress in Paris 2018: from microRNAs to extracellular vesicles. Journal of Thoracic Disease, 2018, 10, S2983-S2987.	1.4	2
30	Knockdown of Gene Expression in Macrophages by microRNA Mimic-Containing Poly (Lactic-co-glycolic Acid) Microparticles. Medicines (Basel, Switzerland), 2018, 5, 133.	1.4	9
31	Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators of Inflammation, 2018, 2018, 1-20.	3.0	70
32	A review of the regulatory framework for nanomedicines in the European Union. , 2018, , 641-679.		6
33	Airway Inflammatory/Immune Responses in COPD and Cystic Fibrosis. Mediators of Inflammation, 2018, 2018, 1-3.	3.0	4
34	Biopolymer-Based Nanoparticles for Cystic Fibrosis Lung Gene Therapy Studies. Materials, 2018, 11, 122.	2.9	42
35	Non-coding RNA in cystic fibrosis. Biochemical Society Transactions, 2018, 46, 619-630.	3.4	29
36	Gender disparities in preterm neonatal outcomes. Acta Paediatrica, International Journal of Paediatrics, 2018, 107, 1494-1499.	1.5	99

3

#	Article	IF	CITATIONS
37	CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease. Expert Review of Respiratory Medicine, 2018, 12, 483-492.	2.5	44
38	Nanotechnology approaches to pulmonary drug delivery. , 2018, , 221-253.		14
39	The therapeutic properties of resminostat for hepatocellular carcinoma. Oncoscience, 2018, 5, 196-208.	2.2	9
40	Identification of a novel functional miR-143-5p recognition element in the Cystic Fibrosis Transmembrane Conductance Regulator 3'UTR. AIMS Genetics, 2018, 05, 053-062.	1.9	8
41	Expression of X-linked Toll-like receptor 4 signaling genes in female vs. male neonates. Pediatric Research, 2017, 81, 831-837.	2.3	18
42	Alpha-1 antitrypsin augmentation therapy decreases miR-199a-5p, miR-598 and miR-320a expression in monocytes via inhibition of NFIºB. Scientific Reports, 2017, 7, 13803.	3.3	7
43	Immune function? A missing link in the gender disparity in preterm neonatal outcomes. Expert Review of Clinical Immunology, 2017, 13, 1061-1071.	3.0	39
44	Reduced pro-inflammatory responses to Staphylococcus aureus bloodstream infection and low prevalence of enterotoxin genes in isolates from patients on haemodialysis. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 33-42.	2.9	1
45	Best of Milan 2017—ERS Lung Science Conference session "Lung tissue repair and remodeling in chronic lung diseases: mechanisms and therapeutic approaches― Journal of Thoracic Disease, 2017, 9, S1541-S1543.	1.4	0
46	Identification of MiR-21-5p as a Functional Regulator of Mesothelin Expression Using MicroRNA Capture Affinity Coupled with Next Generation Sequencing. PLoS ONE, 2017, 12, e0170999.	2.5	22
47	Reduced miR-659-3p Levels Correlate with Progranulin Increase in Hypoxic Conditions: Implications for Frontotemporal Dementia. Frontiers in Molecular Neuroscience, 2016, 9, 31.	2.9	25
48	Toll-Like Receptors in Cystic Fibrosis: Impact of Dysfunctional microRNA on Innate Immune Responses in the Cystic Fibrosis Lung. Journal of Innate Immunity, 2016, 8, 541-549.	3.8	14
49	Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes. American Journal of Physiology - Renal Physiology, 2016, 311, G334-G341.	3.4	26
50	microRNA regulatory circuits in a mouse model of inherited retinal degeneration. Scientific Reports, 2016, 6, 31431.	3.3	32
51	α1-Antitrypsin deficiency. Nature Reviews Disease Primers, 2016, 2, 16051.	30.5	215
52	Sexual maturation protects against development of lung inflammation through estrogen. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L166-L174.	2.9	23
53	Differential <i>In Vitro</i> and <i>In Vivo</i> Toxicities of Antimicrobial Peptide Prodrugs for Potential Use in Cystic Fibrosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 2813-2821.	3.2	30
54	High-throughput profiling for discovery of non-coding RNA biomarkers of lung disease. Expert Review of Molecular Diagnostics, 2016, 16, 173-185.	3.1	4

#	Article	IF	CITATIONS
55	The basophil surface marker CD203c identifies Aspergillus species sensitization in patients with cystic fibrosis. Journal of Allergy and Clinical Immunology, 2016, 137, 436-443.e9.	2.9	47
56	Transcription of Interleukin-8: How Altered Regulation Can Affect Cystic Fibrosis Lung Disease. Biomolecules, 2015, 5, 1386-1398.	4.0	99
57	The Ability of Secretory Leukocyte Protease Inhibitor to Inhibit Apoptosis in Monocytes Is Independent of Its Antiprotease Activity. Journal of Immunology Research, 2015, 2015, 1-6.	2.2	14
58	MicroRNA Dysregulation in Cystic Fibrosis. Mediators of Inflammation, 2015, 2015, 1-7.	3.0	33
59	Non-coding RNA as lung disease biomarkers: FigureÂ1. Thorax, 2015, 70, 501-503.	5.6	49
60	The Biology of Long Non-Coding RNA. , 2015, , 21-42.		2
61	Developmental control of CFTR: from bioinformatics to novel therapeutic approaches. European Respiratory Journal, 2015, 45, 18-20.	6.7	3
62	miRNA-221 is elevated in cystic fibrosis airway epithelial cells and regulates expression of ATF6. Molecular and Cellular Pediatrics, 2015, 2, 1.	1.8	27
63	miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. European Respiratory Journal, 2015, 46, 1350-1360.	6.7	64
64	The Role of Short-Chain Fatty Acids, Produced by Anaerobic Bacteria, in the Cystic Fibrosis Airway. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1314-1324.	5.6	109
65	miR-CATCH: MicroRNA Capture Affinity Technology. Methods in Molecular Biology, 2015, 1218, 365-373.	0.9	15
66	The Biology of MicroRNA. , 2015, , 3-19.		1
67	LATE-BREAKING ABSTRACT: Host defence peptide prodrugs are respirable when delivered by vibrating mesh nebuliser. , 2015, , .		Ο
68	Regulation of interleukin-8 by miR-17 during chronic inflammation in cystic fibrosis. , 2015, , .		0
69	Cytokine responses to Staphylococcus aureusbloodstream infection differ between patient cohorts that have different clinical courses of infection. BMC Infectious Diseases, 2014, 14, 580.	2.9	34
70	miR-199a-5p Silencing Regulates the Unfolded Protein Response in Chronic Obstructive Pulmonary Disease and α ₁ -Antitrypsin Deficiency. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 263-273.	5.6	71
71	Protein quality control in lung disease: it's all about cloud networking. European Respiratory Journal, 2014, 44, 846-849.	6.7	6
72	Bile acids stimulate chloride secretion through CFTR and calcium-activated Clâ^' channels in Calu-3 airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L407-L418.	2.9	26

#	Article	IF	CITATIONS
73	Clarification of the Risk of Chronic Obstructive Pulmonary Disease in α ₁ -Antitrypsin Deficiency PiMZ Heterozygotes. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 419-427.	5.6	156
74	Potential of Host Defense Peptide Prodrugs as Neutrophil Elastase-Dependent Anti-Infective Agents for Cystic Fibrosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 978-985.	3.2	30
75	Therapeutic Aerosol Bioengineering of siRNA for the Treatment of Inflammatory Lung Disease by TNFα Gene Silencing in Macrophages. Molecular Pharmaceutics, 2014, 11, 4270-4279.	4.6	21
76	Long noncoding RNAs in liver cancer: what we know in 2014. Expert Opinion on Therapeutic Targets, 2014, 18, 1207-1218.	3.4	26
77	Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. International Journal of Biochemistry and Cell Biology, 2014, 52, 184-191.	2.8	51
78	Chemical structure and biological activity of a highly branched (1→3,1→6)-β-d-glucan from Isochrysis galbana. Carbohydrate Polymers, 2014, 111, 139-148.	10.2	70
79	miR-31 Dysregulation in Cystic Fibrosis Airways Contributes to Increased Pulmonary Cathepsin S Production. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 165-174.	5.6	71
80	Is There a Therapeutic Role for Selenium in Alpha-1 Antitrypsin Deficiency?. Nutrients, 2013, 5, 758-770.	4.1	4
81	microRNAs in asthma. Current Opinion in Pulmonary Medicine, 2013, 19, 66-72.	2.6	38
82	Regulation of Cystic Fibrosis Transmembrane Conductance Regulator by MicroRNA-145, -223, and -494 Is Altered in ΔF508 Cystic Fibrosis Airway Epithelium. Journal of Immunology, 2013, 190, 3354-3362.	0.8	105
83	<i>Aspergillus</i> -Associated Airway Disease, Inflammation, and the Innate Immune Response. BioMed Research International, 2013, 2013, 1-14.	1.9	90
84	MicroRNA Expression in Cystic Fibrosis Airway Epithelium. Biomolecules, 2013, 3, 157-167.	4.0	5
85	Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique. Nucleic Acids Research, 2013, 41, e71-e71.	14.5	70
86	Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. International Journal of Nanomedicine, 2013, 8, 3907.	6.7	43
87	MicroRNAs and liver cancer associated with iron overload: Therapeutic targets unravelled. World Journal of Gastroenterology, 2013, 19, 5212.	3.3	52
88	Immune, inflammatory and infectious consequences of estrogen in women with cystic fibrosis. Expert Review of Respiratory Medicine, 2012, 6, 573-575.	2.5	16
89	Effect of Estrogen on Pseudomonas Mucoidy and Exacerbations in Cystic Fibrosis. New England Journal of Medicine, 2012, 366, 1978-1986.	27.0	155
90	Therapeutic modulation of miRNA for the treatment of proinflammatory lung diseases. Expert Review of Anti-Infective Therapy, 2012, 10, 359-368.	4.4	35

#	Article	IF	CITATIONS
91	Ventriculoperitoneal shunt-related infections caused by <i>Staphylococcus epidermidis</i> : pathogenesis and implications for treatment. British Journal of Neurosurgery, 2012, 26, 792-797.	0.8	25
92	Innate immunity in cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2012, 11, 363-382.	0.7	191
93	The Effect of <i>Aspergillus fumigatus</i> Infection on Vitamin D Receptor Expression in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 999-1007.	5.6	98
94	High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations. Thorax, 2011, 66, 140-143.	5.6	37
95	Vitamin D receptor agonists inhibit pro-inflammatory cytokine production from the respiratory epithelium in cystic fibrosis. Journal of Cystic Fibrosis, 2011, 10, 428-434.	0.7	52
96	The role of proteases, endoplasmic reticulum stress andSERPINA1heterozygosity in lung disease and α-1 anti-trypsin deficiency. Expert Review of Respiratory Medicine, 2011, 5, 395-411.	2.5	17
97	Quantification and Evaluation of the Role of Antielastin Autoantibodies in the Emphysematous Lung. Pulmonary Medicine, 2011, 2011, 1-6.	1.9	20
98	SLPI and inflammatory lung disease in females. Biochemical Society Transactions, 2011, 39, 1421-1426.	3.4	25
99	Alpha-1 antitrypsin deficiency. Respiratory Medicine CME, 2011, 4, 1-8.	0.1	9
100	Measurement of the Unfolded Protein Response (UPR) in Monocytes. Methods in Enzymology, 2011, 489, 83-95.	1.0	4
101	<i>In Vitro</i> Activities of Synthetic Host Defense Propeptides Processed by Neutrophil Elastase against Cystic Fibrosis Pathogens. Antimicrobial Agents and Chemotherapy, 2011, 55, 2487-2489.	3.2	17
102	Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway. Journal of Biological Chemistry, 2011, 286, 7692-7704.	3.4	59
103	Evidence for Unfolded Protein Response Activation in Monocytes from Individuals with α-1 Antitrypsin Deficiency. Journal of Immunology, 2010, 184, 4538-4546.	0.8	104
104	Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases. Biological Chemistry, 2010, 391, 705-16.	2.5	31
105	Protein Misfolding and Obstructive Lung Disease. Proceedings of the American Thoracic Society, 2010, 7, 346-355.	3.5	24
106	miR-126 Is Downregulated in Cystic Fibrosis Airway Epithelial Cells and Regulates TOM1 Expression. Journal of Immunology, 2010, 184, 1702-1709.	0.8	173
107	Anti-apoptotic effects of Z Â1-antitrypsin in human bronchial epithelial cells. European Respiratory Journal, 2010, 35, 1155-1163.	6.7	26
108	Inhibition of Toll-Like Receptor 2-Mediated Interleukin-8 Production in Cystic Fibrosis Airway Epithelial Cells via the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi>7-Nicotinic Acetylcholine Receptor. Mediators of Inflammation, 2010, 2010, 1-8.</mml:math 	3.0	27

#	Article	IF	CITATIONS
109	Anti–Proline-Glycine-Proline or Antielastin Autoantibodies Are Not Evident in Chronic Inflammatory Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 31-35.	5.6	69
110	17β-Estradiol Inhibits IL-8 in Cystic Fibrosis by Up-Regulating Secretory Leucoprotease Inhibitor. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 62-72.	5.6	85
111	MicroRNAs in inflammatory lung disease - master regulators or target practice?. Respiratory Research, 2010, 11, 148.	3.6	129
112	Candidaspecies in cystic fibrosis: A road less travelled. Medical Mycology, 2010, 48, S114-S124.	0.7	54
113	Alpha-1 antitrypsin deficiency. Respiratory Medicine, 2010, 104, 763-772.	2.9	71
114	Gain of Function Effects of Z Alpha-1 Antitrypsin. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2010, 9, 336-346.	1.1	2
115	Z α-1 antitrypsin deficiency and the endoplasmic reticulum stress response. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2010, 1, 94.	1.1	34
116	Editorial: How Can We Target Pulmonary Inflammation in Cystic Fibrosis?. Open Respiratory Medicine Journal, 2010, 4, 18-19.	0.4	1
117	Hot Topic: [How Can We Target Pulmonary Inflammation in Cystic Fibrosis? (Guest Editor: Catherine M.) Tj ETQq1	1.0.7843	14 rgBT /0∨
118	Gene targeted therapeutics for liver disease in alpha-1 antitrypsin deficiency. Biologics: Targets and Therapy, 2009, , 63.	3.2	9
119	Selenoprotein S/SEPS1 Modifies Endoplasmic Reticulum Stress in Z Variant α1-Antitrypsin Deficiency. Journal of Biological Chemistry, 2009, 284, 16891-16897.	3.4	56
120	Biofilm characteristics of Staphylococcus epidermidis isolates associated with device-related meningitis. Journal of Medical Microbiology, 2009, 58, 855-862.	1.8	24
121	LL-37 Complexation with Glycosaminoglycans in Cystic Fibrosis Lungs Inhibits Antimicrobial Activity, Which Can Be Restored by Hypertonic Saline. Journal of Immunology, 2009, 183, 543-551.	0.8	129
122	Communityâ€acquired pneumonia in older patients: Does age influence systemic cytokine levels in communityâ€acquired pneumonia?. Respirology, 2009, 14, 210-216.	2.3	34
123	<i>Staphylococcus epidermidis</i> polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2. Cellular Microbiology, 2009, 11, 421-432.	2.1	42
124	Proteases and antiproteases in chronic neutrophilic lung disease – relevance to drug discovery. British Journal of Pharmacology, 2009, 158, 1048-1058.	5.4	124
125	Gene targeted therapeutics for liver disease in alpha-1 antitrypsin deficiency. Biologics: Targets and Therapy, 2009, 3, 63-75.	3.2	15
126	Alphaâ€1 antitrypsin deficiency: A conformational disease associated with lung and liver manifestations. Journal of Inherited Metabolic Disease, 2008, 31, 21-34.	3.6	63

#	Article	IF	CITATIONS
127	Biofilm and the role of the ica operon and aap in Staphylococcus epidermidis isolates causing neurosurgical meningitis. Clinical Microbiology and Infection, 2008, 14, 719-722.	6.0	38
128	Toll-like receptors as therapeutic targets in cystic fibrosis. Expert Opinion on Therapeutic Targets, 2008, 12, 1481-1495.	3.4	28
129	Targeting neutrophil elastase in cystic fibrosis. Expert Opinion on Therapeutic Targets, 2008, 12, 145-157.	3.4	79
130	Activation of the Epidermal Growth Factor Receptor (EGFR) by a Novel Metalloprotease Pathway. Journal of Biological Chemistry, 2008, 283, 31736-31744.	3.4	96
131	Elafin, an Elastase-specific Inhibitor, Is Cleaved by Its Cognate Enzyme Neutrophil Elastase in Sputum from Individuals with Cystic Fibrosis. Journal of Biological Chemistry, 2008, 283, 32377-32385.	3.4	75
132	Alpha-1-antitrypsin aerosolised augmentation abrogates neutrophil elastase-induced expression of cathepsin B and matrix metalloprotease 2 in vivo and in vitro. Thorax, 2008, 63, 621-626.	5.6	50
133	Secretory Leucocyte Protease Inhibitor Inhibits Interferon-Î ³ -induced Cathepsin S Expression. Journal of Biological Chemistry, 2007, 282, 33389-33395.	3.4	47
134	Neutrophil Elastase Up-Regulates Cathepsin B and Matrix Metalloprotease-2 Expression. Journal of Immunology, 2007, 178, 5871-5878.	0.8	109
135	Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke. Respiratory Research, 2007, 8, 84.	3.6	101
136	Tauroursodeoxycholic acid inhibits apoptosis induced by Z alpha-1 antitrypsin via inhibition of bad. Hepatology, 2007, 46, 496-503.	7.3	69
137	Effect of pro-inflammatory stimuli on mucin expression and inhibition by secretory leucoprotease inhibitor. Cellular Microbiology, 2007, 9, 670-679.	2.1	18
138	Antimicrobial proteins and polypeptides in pulmonary innate defence. Respiratory Research, 2006, 7, 29.	3.6	100
139	Interleukin-18–607 Promoter Polymorphism in Sarcoidosis: Ignoring "Negative―Results. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 815-815.	5.6	10
140	Elafin Prevents Lipopolysaccharide-induced AP-1 and NF-κB Activation via an Effect on the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry, 2006, 281, 34730-34735.	3.4	71
141	Interleukin-1, Neutrophil Elastase, and Lipopolysaccharide: Key Pro- Inflammatory Stimuli Regulating Inflammation in Cystic Fibrosis. Current Respiratory Medicine Reviews, 2005, 1, 43-67.	0.2	6
142	Elastolytic Proteases. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1070-1076.	5.6	94
143	Endotoxin Up-regulates Interleukin-18. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1299-1307.	5.6	29
144	Viral Inhibition of IL-1- and Neutrophil Elastase-Induced Inflammatory Responses in Bronchial Epithelial Cells. Journal of Immunology, 2005, 175, 7594-7601.	0.8	29

#	Article	IF	CITATIONS
145	TLR-Induced Inflammation in Cystic Fibrosis and Non-Cystic Fibrosis Airway Epithelial Cells. Journal of Immunology, 2005, 174, 1638-1646.	0.8	208
146	Secretory leucoprotease inhibitor binds to NF-κB binding sites in monocytes and inhibits p65 binding. Journal of Experimental Medicine, 2005, 202, 1659-1668.	8.5	204
147	Respiratory epithelial cells require Toll-like receptor 4 for induction of Human β-defensin 2 by Lipopolysaccharide. Respiratory Research, 2005, 6, 116.	3.6	85
148	Toll-like receptor expression and function in airway epithelial cells. Archivum Immunologiae Et Therapiae Experimentalis, 2005, 53, 418-27.	2.3	40
149	Secretory Leucoprotease Inhibitor Impairs Toll-Like Receptor 2- and 4-Mediated Responses in Monocytic Cells. Infection and Immunity, 2004, 72, 3684-3687.	2.2	84
150	Loss of Microbicidal Activity and Increased Formation of Biofilm Due to Decreased Lactoferrin Activity in Patients with Cystic Fibrosis. Journal of Infectious Diseases, 2004, 190, 1245-1253.	4.0	153
151	Z α1-Antitrypsin Polymerizes in the Lung and Acts as a Neutrophil Chemoattractant. Chest, 2004, 125, 1952-1957.	0.8	148
152	Activation of Endoplasmic Reticulum-Specific Stress Responses Associated with the Conformational Disease Z α1-Antitrypsin Deficiency. Journal of Immunology, 2004, 172, 5722-5726.	0.8	169
153	Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Letters, 2003, 544, 129-132.	2.8	216
154	Neutrophil elastase up-regulates human β-defensin-2 expression in human bronchial epithelial cells. FEBS Letters, 2003, 546, 233-236.	2.8	24
155	Local Impairment of Anti–Neutrophil Elastase Capacity in Communityâ€Acquired Pneumonia. Journal of Infectious Diseases, 2003, 188, 769-776.	4.0	39
156	Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax, 2003, 58, 154-156.	5.6	177
157	Inactivation of Human β-Defensins 2 and 3 by Elastolytic Cathepsins. Journal of Immunology, 2003, 171, 931-937.	0.8	195
158	Secretory Leucoprotease Inhibitor Prevents Lipopolysaccharide-induced lκBα Degradation without Affecting Phosphorylation or Ubiquitination. Journal of Biological Chemistry, 2002, 277, 33648-33653.	3.4	137
159	Tumor Necrosis Factor–α–Converting Enzyme: Its Role in Communityâ€Acquired Pneumonia. Journal of Infectious Diseases, 2002, 186, 1790-1796.	4.0	23
160	Regulation of inflammation in community acquired pneumonia by TNF alpha converting enzyme. Biochemical Society Transactions, 2002, 30, A39-A39.	3.4	0
161	Interleukin-8 Up-regulation by Neutrophil Elastase Is Mediated by MyD88/IRAK/TRAF-6 in Human Bronchial Epithelium. Journal of Biological Chemistry, 2001, 276, 35494-35499.	3.4	145
162	Cathepsin B, L, and S Cleave and Inactivate Secretory Leucoprotease Inhibitor. Journal of Biological Chemistry, 2001, 276, 33345-33352.	3.4	168

0

#	Article	IF	CITATIONS
163	Role of IL-18 in CD4+ T Lymphocyte Activation in Sarcoidosis. Journal of Immunology, 2000, 165, 4718-4724.	0.8	90
164	Interleukin-1 receptor-associated kinase and TRAF-6 mediate the transcriptional regulation of interleukin-2 by interleukin-1 via NFκB but unlike interleukin-1 are unable to stabilise interleukin-2 mRNA. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1451, 109-121.	4.1	19
165	Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. Journal of Leukocyte Biology, 1998, 63, 650-657.	3.3	497
166	Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Molecular Microbiology, 1995, 17, 1143-1152.	2.5	277
167	α ₁ -antitrypsin deficiency. , 0, , 47-84.		0

168 Microbial Recognition by Epithelium. , 0, , 169-185.