Eva Kastovska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8401614/publications.pdf

Version: 2024-02-01

623574 580701 25 737 14 25 citations g-index h-index papers 25 25 25 1167 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Priming effects in the rhizosphere and root detritusphere of two wet-grassland graminoids. Plant and Soil, 2022, 472, 105-126.	1.8	8
2	Rhizosphere â€~Trade' Is an Unnecessary Analogy: Response to Noë. Trends in Ecology and Evolution, 2021, 36, 176-177.	4.2	4
3	Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle. Forests, 2021, 12, 410.	0.9	6
4	The Exudation of Surplus Products Links Plant Functional Traits and Plant-Microbial Stoichiometry. Land, 2021, 10, 840.	1.2	13
5	Decomposition of peatland DOC affected by root exudates is driven by specific r and K strategic bacterial taxa. Scientific Reports, 2021, 11, 18677.	1.6	10
6	Surplus Carbon Drives Allocation and Plant–Soil Interactions. Trends in Ecology and Evolution, 2020, 35, 1110-1118.	4.2	171
7	Bacteria but not fungi respond to soil acidification rapidly and consistently in both a spruce and beech forest. FEMS Microbiology Ecology, 2020, 96, .	1.3	15
8	Positive response of soil microbes to long-term nitrogen input in spruce forest: Results from Gårdsjön whole-catchment N-addition experiment. Soil Biology and Biochemistry, 2020, 143, 107732.	4.2	35
9	Spatial heterogeneity of belowground microbial communities linked to peatland microhabitats with different plant dominants. FEMS Microbiology Ecology, 2019, 95, .	1.3	28
10	Interaction of fertilization and soil water status determine C partitioning in a sedge wetland. Soil Biology and Biochemistry, 2019, 135, 85-94.	4.2	3
11	Species effects and seasonal trends on plant efflux quantity and quality in a spruce swamp forest. Plant and Soil, 2018, 426, 179-196.	1.8	21
12	Response of peat biogeochemistry and soil organic matter quality to rewetting in bogs and spruce swamp forests. European Journal of Soil Biology, 2018, 85, 12-22.	1.4	6
13	Cotton-Grass and Blueberry have Opposite Effect on Peat Characteristics and Nutrient Transformation in Peatland. Ecosystems, 2018, 21, 443-458.	1.6	24
14	A plant–microbe interaction framework explaining nutrient effects on primary production. Nature Ecology and Evolution, 2018, 2, 1588-1596.	3.4	100
15	Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard). Biogeosciences, 2018, 15, 1879-1894.	1.3	34
16	Indications that long-term nitrogen loading limits carbon resources for soil microbes. Soil Biology and Biochemistry, 2017, 115, 310-321.	4.2	19
17	Recovery of the ectomycorrhizal community after termination of long-term nitrogen fertilisation of a boreal Norway spruce forest. Fungal Ecology, 2017, 29, 116-122.	0.7	17
18	Linking Above- and Belowground Responses to 16 Years of Fertilization, Mowing, and Removal of the Dominant Species in a Temperate Grassland. Ecosystems, 2017, 20, 354-367.	1.6	42

#	Article	IF	CITATION
19	Rhizodeposition flux of competitive versus conservative graminoid: contribution of exudates and root lysates as affected by N loading. Plant and Soil, 2017, 412, 331-344.	1.8	17
20	The Effect of P Enrichment on Exudate Quantity and Bioavailability - a Comparison of Two Macrophyte Species. Wetlands, 2016, 36, 789-798.	0.7	2
21	A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe N cycling. Biogeochemistry, 2015, 122, 47-59.	1.7	44
22	Nutrient addition retards decomposition and C immobilization in two wet grasslands. Hydrobiologia, 2012, 692, 67-81.	1.0	13
23	Comparison of uptake of different N forms by soil microorganisms and two wet-grassland plants: A pot study. Soil Biology and Biochemistry, 2011, 43, 1285-1291.	4.2	40
24	Direct effect of fertilization on microbial carbon transformation in grassland soils in dependence on the substrate quality. Journal of Plant Nutrition and Soil Science, 2010, 173, 706-714.	1.1	8
25	Fate and dynamics of recently fixed C in pasture plant–soil system under field conditions. Plant and Soil, 2007, 300, 61-69.	1.8	57