Yanchun Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/840133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chemical Science, 2017, 8, 4917-4925.	3.7	239
2	Edible Filamentous Fungi from the Species <i>Monascus</i> : Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 555-567.	5.9	193
3	Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk. International Journal of Food Microbiology, 2011, 148, 75-79.	2.1	103
4	MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Applied Microbiology and Biotechnology, 2014, 98, 285-296.	1.7	94
5	Insights into Monascus biology at the genetic level. Applied Microbiology and Biotechnology, 2014, 98, 3911-3922.	1.7	73
6	Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism. Fungal Biology, 2016, 120, 297-305.	1.1	69
7	ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Applied Microbiology and Biotechnology, 2013, 97, 4965-4976.	1.7	66
8	Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber. World Journal of Microbiology and Biotechnology, 2009, 25, 989-995.	1.7	60
9	mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7. Fungal Biology, 2012, 116, 225-233.	1.1	50
10	Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Scientific Reports, 2015, 5, 18330.	1.6	47
11	Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of <i>Monascus ruber</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 9506-9514.	2.4	44
12	Cloning and functional analysis of the Gβ gene Mgb1 and the Gγ gene Mgg1 in Monascus ruber. Journal of Microbiology, 2014, 52, 35-43.	1.3	42
13	Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7. Applied Microbiology and Biotechnology, 2016, 100, 7037-7049.	1.7	36
14	Free Phenolic Acids in Shanxi Aged Vinegar: Changes During Aging and Synergistic Antioxidant Activities. International Journal of Food Properties, 2016, 19, 1183-1193.	1.3	34
15	Monasone Naphthoquinone Biosynthesis and Resistance in <i>Monascus</i> Fungi. MBio, 2020, 11, .	1.8	24
16	Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7. Extremophiles, 2016, 20, 451-459.	0.9	21
17	Monacolin <scp>K</scp> production by citrininâ€free <i><scp>M</scp>onascus pilosus</i> <scp>MS</scp> â€l and fermentation process monitoring. Engineering in Life Sciences, 2014, 14, 538-545.	2.0	19
18	Production and optimization of monacolin K by citrinin-free Monascus pilosus MS-1 in solid-state fermentation using non-glutinous rice and soybean flours as substrate. European Food Research and Technology, 2014, 239, 629-636.	1.6	18

Yanchun Shao

#	Article	IF	CITATIONS
19	NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin. AMB Express, 2017, 7, 166.	1.4	18
20	Effects of Different G-Protein α-Subunits on Growth, Development and Secondary Metabolism of Monascus ruber M7. Frontiers in Microbiology, 2019, 10, 1555.	1.5	17
21	Effects of glycerol on pigments and monacolin K production by the high-monacolin K-producing but citrinin-free strain, Monascus pilosus MS-1. European Food Research and Technology, 2015, 240, 635-643.	1.6	16
22	Histone deacetylase MrRpd3 plays a major regulational role in the mycotoxin production of Monascus ruber. Food Control, 2022, 132, 108457.	2.8	11
23	Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway. Fungal Biology, 2014, 118, 846-854.	1.1	10
24	mrskn7, a putative response regulator gene of Monascus ruber M7, is involved in oxidative stress response, development, and mycotoxin production. Mycologia, 2016, 108, 851-859.	0.8	9
25	MrGcn5 is required for the mycotoxin production, sexual and asexual development in Monascus ruber. Food Bioscience, 2021, 43, 101304.	2.0	9
26	Effects of an alternative oxidase gene on conidia viability under external stresses in <i>Monascus ruber</i> M7. Journal of Basic Microbiology, 2017, 57, 413-418.	1.8	8
27	Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber. Journal of Microbiology, 2018, 56, 255-263.	1.3	5
28	From Traditional Application to Genetic Mechanism: Opinions on Monascus Research in the New Milestone. Frontiers in Microbiology, 2021, 12, 659907.	1.5	5
29	Genome Mining and Analysis of PKS Genes in Eurotium cristatum E1 Isolated from Fuzhuan Brick Tea. Journal of Fungi (Basel, Switzerland), 2022, 8, 193.	1.5	3
30	Mrada3 is required for sexual reproduction and secondary metabolite production in industrial fungi Monascus strain. Journal of Applied Microbiology, 2022, 133, 591-606.	1.4	1