Joel D Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8401000/publications.pdf

Version: 2024-02-01

45 papers

4,332 citations

257101 24 h-index 288905 40 g-index

65 all docs

65 docs citations

65 times ranked 7691 citing authors

#	Article	IF	Citations
1	Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020, 369, 330-333.	6.0	1,277
2	Quantitative mass imaging of single biological macromolecules. Science, 2018, 360, 423-427.	6.0	453
3	Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature Communications, 2020, 11, 2688.	5.8	304
4	SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: a cross-sectional study. Thorax, 2020, 75, 1089-1094.	2.7	234
5	Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science, 2019, 363, 649-654.	6.0	227
6	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	13.5	154
7	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	5.8	149
8	Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen. Cell Reports, 2018, 24, 1958-1966.e5.	2.9	120
9	Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Science, 2021, 7, 594-602.	5. 3	118
10	Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7320-7325.	3.3	95
11	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	4.7	75
12	Sensitive Detection of SARS-CoV-2–Specific Antibodies in Dried Blood Spot Samples. Emerging Infectious Diseases, 2020, 26, 2970-2973.	2.0	74
13	Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition. Journal of Molecular Biology, 2021, 433, 166762.	2.0	64
14	Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathogens, 2019, 15, e1007920.	2.1	61
15	Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry, 2021, 60, 2153-2169.	1.2	54
16	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	2.1	52
17	Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. Cell Reports, 2018, 24, 3324-3338.e5.	2.9	49
18	Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure, 2020, 28, 897-909.e6.	1.6	46

#	Article	IF	CITATIONS
19	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	2.9	37
20	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	2.9	35
21	Development of a highâ€sensitivity ELISA detecting IgG, IgA and IgM antibodies to the SARSâ€CoVâ€⊋ spike glycoprotein in serum and saliva. Immunology, 2021, 164, 135-147.	2.0	35
22	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	5.8	35
23	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	2.9	33
24	Signature of Antibody Domain Exchange by Native Mass Spectrometry and Collision-Induced Unfolding. Analytical Chemistry, 2018, 90, 7325-7331.	3.2	31
25	Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans. Journal of the American Society for Mass Spectrometry, 2018, 29, 1250-1261.	1.2	26
26	Serological responses to SARS-CoV-2 following non-hospitalised infection: clinical and ethnodemographic features associated with the magnitude of the antibody response. BMJ Open Respiratory Research, 2021, 8, e000872.	1.2	25
27	Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors. Journal of Biological Chemistry, 2017, 292, 12994-13007.	1.6	23
28	A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathogens, 2021, 17, e1009407.	2.1	23
29	Effector function does not contribute to protection from virus challenge by a highly potent HIV broadly neutralizing antibody in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	23
30	Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. Journal of Molecular Biology, 2022, 434, 167332.	2.0	22
31	SARSâ€CoVâ€2â€specific lgG1/lgG3 but not lgM in children with Pediatric Inflammatory Multiâ€System Syndrome. Pediatric Allergy and Immunology, 2021, 32, 1125-1129.	1.1	13
32	Engineering well-expressed, V2-immunofocusing HIV-1 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens. PLoS Pathogens, 2021, 17, e1009807.	2.1	13
33	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	1.5	13
34	High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 27.	2.9	13
35	Suppression of O-Linked Glycosylation of the SARS-CoV-2 Spike by Quaternary Structural Restraints. Analytical Chemistry, 2021, 93, 14392-14400.	3.2	12
36	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11

#	Article	IF	CITATIONS
37	Site-Specific Glycosylation of Recombinant Viral Glycoproteins Produced in Nicotiana benthamiana. Frontiers in Plant Science, 2021, 12, 709344.	1.7	9
38	Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood, 2021, 138, 1570-1582.	0.6	9
39	Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. MBio, 2021, 12, e0042921.	1.8	6
40	Harnessing post-translational modifications for next-generation HIV immunogens. Biochemical Society Transactions, 2018, 46, 691-698.	1.6	5
41	Augmenting glycosylationâ€directed folding pathways enhances the fidelity of HIV Env immunogen production in plants. Biotechnology and Bioengineering, 0, , .	1.7	5
42	Title is missing!. , 2020, 16, e1008665.		0
43	Title is missing!. , 2020, 16, e1008665.		O
44	Title is missing!. , 2020, 16, e1008665.		0
45	Title is missing!. , 2020, 16, e1008665.		O