Jerzy Falandysz

List of Publications by Citations

Source: https://exaly.com/author-pdf/8400652/jerzy-falandysz-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 349
 11,511
 54
 86

 papers
 citations
 h-index
 g-index

 380
 12,353
 5
 6.82

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
349	Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. <i>Environmental Science & amp; Technology</i> , 2004 , 38, 4489-95	10.3	823
348	Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. <i>Environmental Science & Environmental Scienc</i>	10.3	336
347	Polychlorinated naphthalenes: an environmental update. <i>Environmental Pollution</i> , 1998 , 101, 77-90	9.3	272
346	Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 477-501	5.7	243
345	Relative Potencies of Individual Polychlorinated Naphthalenes and Halowax Mixtures To Induce Ah Receptor-Mediated Responses. <i>Environmental Science & Environmental Science & </i>	10.3	213
344	Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays. <i>Archives of Environmental Contamination and Toxicology</i> , 2000 , 39, 273-81	3.2	192
343	Butyltin residues in sediment, fish, fish-eating birds, harbour porpoise and human tissues from the Polish coast of the Baltic Sea. <i>Marine Pollution Bulletin</i> , 1997 , 34, 203-207	6.7	186
342	Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic Coast?. <i>Environmental Science & Environmental Science</i>	10.3	172
341	Polybrominated dibenzo-p-dioxins, dibenzofurans, and biphenyls: inclusion in the toxicity equivalency factor concept for dioxin-like compounds. <i>Toxicological Sciences</i> , 2013 , 133, 197-208	4.4	162
340	ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. <i>Food Additives and Contaminants</i> , 2001 , 18, 503-13		154
339	Selenium in edible mushrooms. <i>Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews</i> , 2008 , 26, 256-99	4.5	142
338	Perfluorinated compounds in streams of the Shihwa Industrial Zone and Lake Shihwa, South Korea. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2374-80	3.8	120
337	Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. <i>Food Chemistry</i> , 2004 , 84, 405-416	8.5	106
336	Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 416-31	5.1	105
335	Chloronaphthalenes as food-chain contaminants: a review. <i>Food Additives and Contaminants</i> , 2003 , 20, 995-1014		101
334	The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2011 , 46, 569-73	2.3	98
333	The concentrations and bioconcentration factors of mercury in mushrooms from the Mierzeja Willana sand-bar, northern Poland. <i>Science of the Total Environment</i> , 1997 , 203, 221-8	10.2	89

(2010-2001)

332	Polychlorinated biphenyls and organochlorine pesticides in soils from the southern part of Poland. <i>Archives of Environmental Contamination and Toxicology</i> , 2001 , 40, 173-8	3.2	85
331	Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2011 , 46, 231-46	2.2	82
330	Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. <i>Chemosphere</i> , 2008 , 73, 1230-9	8.4	81
329	Polychlorinated Naphthalenes in Sediment and Biota from the Gdaßk Basin, Baltic Sea. <i>Environmental Science & Environmental Sc</i>	10.3	81
328	Mercury content and its bioconcentration factors in wild mushrooms at likta and Morag, northeastern Poland. <i>Journal of Agricultural and Food Chemistry</i> , 2003 , 51, 2832-6	5.7	77
327	Spatial Distribution in Plankton and Bioaccumulation Features of Polychlorinated Naphthalenes in a Pelagic Food Chain in Southern Part of the Baltic Proper. <i>Environmental Science & Environmental Sc</i>	10.3	77
326	Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011 , 46, 378-93	2.3	76
325	Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2008 , 43, 1692-9	2.3	75
324	Mercury and its bioconcentration factors in King Bolete (Boletus edulis) Bull. Fr. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 2089-95	2.3	74
323	Selected elements in fly agaric Amanita muscaria. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1615-23	2.3	73
322	Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. <i>Food Chemistry</i> , 2003 , 81, 21-26	8.5	73
321	Some mineral constituents of Parasol Mushroom (Macrolepiota procera). <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2008 , 43, 187-92	2.2	72
320	Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)consequences to human health. <i>Environment International</i> , 2011 , 37, 882-8	12.9	70
319	Selected elements in Brown Birch Scaber Stalk Leccinum scabrum. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 2081-8	2.3	70
318	The toxicological effects of halogenated naphthalenes: a review of aryl hydrocarbon receptor-mediated (dioxin-like) relative potency factors. <i>Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews</i> , 2014 , 32, 239-72	4.5	68
317	Mercury in wild mushrooms and underlying soil substrate from Koszalin, North-central Poland. <i>Chemosphere</i> , 2004 , 54, 461-6	8.4	68
316	Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. <i>Journal of Geochemical Exploration</i> , 2012 , 121, 76-82	3.8	67
315	Profile and bioconcentration of minerals by King Bolete (Boletus edulis) from the Pöcka Dale in Poland. <i>Food Additives and Contaminants: Part B Surveillance</i> , 2010 , 3, 1-6	3.3	67

314	Polychlorinated naphthalene contamination of some recently manufactured industrial products and commercial goods in Japan. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2003 , 38, 1745-59	2.3	66
313	Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. <i>Food Chemistry</i> , 2011 , 125, 986-990	8.5	64
312	Temporal trends of organochlorine concentrations in cod-liver oil from the southern Baltic proper, 1971 1989. <i>Marine Pollution Bulletin</i> , 1992 , 24, 358-363	6.7	64
311	Total mercury in mushrooms and underlying soil substrate from the Borecka Forest, Northeastern Poland. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 42, 145-54	3.2	63
310	Variations in metal levels accumulated in Poison Pax (Paxillus involutus) mushroom collected at one site over four years. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2011 , 46, 581-8	2.3	61
309	Silver uptake by Agaricus bisporus from an artificially enriched substrate. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1994 , 199, 225-8		61
308	Speciation and Concentrations of Mercury in Certain Coastal Marine Sediments. <i>Water, Air, and Soil Pollution</i> , 1998 , 103, 129-136	2.6	60
307	Content and bioconcentration factors of mercury by Parasol Mushroom Macrolepiota procera. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42, 735-40	2.2	60
306	Mercury and its bioconcentration factors in Brown Birch Scaber Stalk (Leccinum scabrum) from various sites in Poland. <i>Food Chemistry</i> , 2007 , 105, 635-640	8.5	60
305	Application of ICP sector field MS and principal component analysis for studying interdependences among 23 trace elements in Polish beers. <i>Journal of Agricultural and Food Chemistry</i> , 2001 , 49, 3425-31	5.7	60
304	Mercury bio-concentration potential of Larch Bolete, Suillus grevillei, mushroom. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2009 , 83, 275-9	2.7	58
303	Concentrations of Mercury in Wild Growing Higher Fungi and underlying Substrate near Lake Wdzydze, Poland. <i>Water, Air, and Soil Pollution</i> , 2003 , 148, 127-137	2.6	58
302	Silver content of wild-grown mushrooms from northern Poland. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 222-4		58
301	Polychlorinated naphthalenes (PCNs) in food and humans. <i>Environment International</i> , 2017 , 104, 1-13	12.9	56
300	Organochlorine pesticides and PCBs in perch Perca fluviatilis from the Odra/Oder river estuary, Baltic Sea. <i>Food Chemistry</i> , 2004 , 87, 17-23	8.5	56
299	Mercury in mushrooms and soil of the Tarnobrzeska Plain, south-eastern Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2002 , 37, 343-52	2.3	56
298	Accumulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. <i>Environment International</i> , 2002 , 28, 421-7	12.9	56
297	Temporal variability in 20 chemical elements content of Parasol Mushroom (Macrolepiota procera) collected from two sites over a few years. <i>Journal of Environmental Science and Health - Part B</i> Pesticides Food Contaminants and Agricultural Wastes 2012 , 47, 81-8	2.2	55

296	Some toxic and trace metals in big game hunted in the northern part of Poland in 1987-1991. <i>Science of the Total Environment</i> , 1994 , 141, 59-73	10.2	55	
295	Congener-specific carbon isotopic analysis of technical PCB and PCN mixtures using two-dimensional gas chromatography-isotope ratio mass spectrometry. <i>Environmental Science & Environmental Science</i>	10.3	54	
294	Content and bioconcentration of mercury in mushrooms from northern Poland. <i>Food Additives and Contaminants</i> , 2003 , 20, 247-53		53	
293	Evaluation of Mercury Contamination in Fungi Boletus Species from Latosols, Lateritic Red Earths, and Red and Yellow Earths in the Circum-Pacific Mercuriferous Belt of Southwestern China. <i>PLoS ONE</i> , 2015 , 10, e0143608	3.7	51	
292	Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: Accumulation, distribution and probable dietary intake. <i>Science of the Total Environment</i> , 2015 , 537, 470-8	10.2	50	
291	Altitudinal distributions of PCDD/Fs, dioxin-like PCBs and PCNs in soil and yak samples from Wolong high mountain area, eastern Tibet-Qinghai Plateau, China. <i>Science of the Total Environment</i> , 2013 , 444, 102-9	10.2	50	
290	Mercury in Common Chanterelles mushrooms: Cantharellus spp. update. <i>Food Chemistry</i> , 2012 , 133, 842	2-82.50	50	
289	Mercury in mushrooms and soil from the WieluEka Upland in south-central Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2002 , 37, 1409-20	2.3	50	
288	Mercury and its bioconcentration factors in Poison Pax (Paxillus involutus) from various sites in Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1095-100	2.3	49	
287	Total mercury in wild mushrooms and underlying soil substrate from the city of Umeland its surroundings, Sweden. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2001 , 67, 763-70	2.7	49	
286	Investigation on mineral composition and accumulation by popular edible mushroom common chanterelle (Cantharellus cibarius). <i>Ecotoxicology and Environmental Safety</i> , 2015 , 113, 9-17	7	48	
285	Polychlorinated biphenyls and -naphthalenes in pine needles and soil from Polandconcentrations and patterns in view of long-term environmental monitoring. <i>Chemosphere</i> , 2007 , 67, 1877-86	8.4	48	
284	Some toxic and essential trace metals in cattle from the northern part of Poland. <i>Science of the Total Environment</i> , 1993 , 136, 177-91	10.2	48	
283	Evaluation of the radioactive contamination in fungi genus Boletus in the region of Europe and Yunnan Province in China. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 8217-24	5.7	47	
282	Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. <i>Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment,</i> 2012 , 29, 951-61	3.2	47	
281	Quantitative structure-activity relationships for the prediction of relative in vitro potencies (REPs) for chloronaphthalenes. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 573-90	2.3	47	
280	Concentrations of heavy metals in the tissues of red deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. <i>Food Additives and Contaminants</i> , 2005 , 22, 141-9		47	
279	Mercury in wild mushrooms and underlying soil substrate from the great lakes land in Poland. Journal of Environmental Monitoring, 2002, 4, 473-6		45	

278	Review: on published data and methods for selenium in mushrooms. <i>Food Chemistry</i> , 2013 , 138, 242-50	8.5	44
277	Major and trace elements in sclerotium of Pleurotus tuber-regium (可mushroomDietary intake and risk in southeastern Nigeria. <i>Journal of Food Composition and Analysis</i> , 2013 , 29, 73-81	4.1	44
276	Mercury and its bioconcentration factors in fly agaric (Amanita muscaria) from spatially distant sites in Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1625-30	2.3	44
275	HRGC/HRMS analysis of chloronaphthalenes in several batches of Halowax 1000, 1001, 1013, 1014 and 1099. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2006 , 41, 2237-55	2.3	44
274	Mercury content of squid Loligo opalescens. Food Chemistry, 1990, 38, 171-177	8.5	43
273	Source determination of highly chlorinated biphenyl isomers in pine needles - comparison to several PCB preparations. <i>Environmental Pollution</i> , 2006 , 143, 46-59	9.3	42
272	Selected elements of Poison Pax Paxillus involutus. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1161-8	2.3	41
271	Butyltin compounds in sediment and fish from the Polish Coast of the Baltic Sea. <i>Environmental Science and Pollution Research</i> , 1999 , 6, 200-6	5.1	41
270	Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and sheep slaughtered in the northern part of Poland, 1987. <i>Food Additives and Contaminants</i> , 1991 , 8, 71-83		41
269	Trace elements profile of Slate Bolete (Leccinum duriusculum) mushroom and associated upper soil horizon. <i>Journal of Geochemical Exploration</i> , 2012 , 121, 69-75	3.8	40
268	QSPR Modeling of Partition Coefficients and Henry Law Constants for 75 Chloronaphthalene Congeners by Means of Six Chemometric Approaches Comparative Study. <i>Journal of Physical and Chemical Reference Data</i> , 2007 , 36, 203-214	4.3	39
267	Dioxin-like compounds in pine needles around Tokyo Bay, Japan in 1999. <i>Journal of Environmental Monitoring</i> , 2004 , 6, 305-12		39
266	Concentrations and biomagnification of polychlorinated naphthalenes in black cormorants Phalacrocorax carbo sinensis from the Gulf of GdaEk, Baltic Sea. <i>Science of the Total Environment</i> , 1997 , 204, 97-106	10.2	38
265	Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera). <i>Environmental Geochemistry and Health</i> , 2008 , 30, 121-5	4.7	38
264	Tris(4-chlorophenyl)methane and Tris(4-chlorophenyl)methanol in Sediment and Food Webs from the Baltic South Coast. <i>Environmental Science & Environmental Science & Environme</i>	10.3	37
263	Bioconcentration factors (BCF) of silver in wild Agaricus campestris. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1995 , 55, 122-9	2.7	37
262	Metals and organochlorines in four female White-tailed eagles. Marine Pollution Bulletin, 1988, 19, 521-	526	37
261	Leaching of arsenic and sixteen metallic elements from Amanita fulva mushrooms after food processing. LWT - Food Science and Technology, 2017, 84, 861-866	5.4	36

(2016-2016)

260	Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils?. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 7444-51	5.1	36	
259	Mercury in the fairy-ring of Gymnopus erythropus (Pers.) and Marasmius dryophilus (Bull.) P. Karst. mushrooms from the Gongga Mountain, Eastern Tibetan Plateau. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 104, 18-22	7	36	
258	Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: Accumulation, loss in cooking and dietary intake. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 115, 49-54	7	36	
257	Concentrations and spatial variations of cyclodienes and other organochlorines in herring and perch from the Baltic Sea. <i>Science of the Total Environment</i> , 1998 , 215, 69-83	10.2	36	
256	Computational estimation of logarithm of n-octanol/air partition coefficient and subcooled vapor pressures of 75 chloronaphthalene congeners. <i>Atmospheric Environment</i> , 2005 , 39, 1439-1446	5.3	36	
255	Mercury accumulation of three Lactarius mushroom species. <i>Food Chemistry</i> , 2017 , 214, 96-101	8.5	35	
254	Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 11472-11482	5.1	35	
253	Mercury in European Blushers, Amanita rubescens, mushrooms and topsoils: bioconcentration potential and intake assessment. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2012 , 47, 466-74	2.2	35	
252	Spatial distribution and bioaccumulation of polychlorinated naphthalenes (PCNs) in mussel and fish from the Gulf of Gdaßk, Baltic Sea. <i>Science of the Total Environment</i> , 1997 , 203, 93-104	10.2	35	
251	Mercury contamination of fungi genus Xerocomus in the Yunnan province in China and the region of Europe. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2015 , 50, 1342-50	2.3	34	
250	QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners. <i>Atmospheric Environment</i> , 2008 , 42, 6627-6636	5.3	34	
249	Congener-specific analysis of chloronaphthalenes in white-tailed sea eagles Haliaeetus albicilla breeding in Poland. <i>Chemosphere</i> , 1996 , 33, 51-69	8.4	34	
248	Polychlorinated biphenyl and organochlorine insecticide residues in human adipose tissue in Poland. <i>Environmental Pollution</i> , 1993 , 79, 45-9	9.3	34	
247	Congener-specific data on polychlorinated biphenyls in tissues of common porpoise from Puck Bay, Baltic Sea. <i>Archives of Environmental Contamination and Toxicology</i> , 1994 , 26, 267-72	3.2	34	
246	Multivariate analysis of identity of imported technical PCN formulation. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2008 , 43, 1381-5	90 ^{2.3}	33	
245	Prediction of environmental partition coefficients and the Henry's law constants for 135 congeners of chlorodibenzothiophene. <i>Chemosphere</i> , 2006 , 62, 1817-28	8.4	33	
244	Predicting water solubility of congeners: chloronaphthalenesa case study. <i>Journal of Hazardous Materials</i> , 2009 , 170, 1014-22	12.8	32	
243	Arsenic and its compounds in mushrooms: A review. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2016, 34, 217-232	4.5	32	

242	Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. <i>Chemical Papers</i> , 2014 , 68,	1.9	31
241	Concentrations, clearance rates and toxic potential of non-ortho coplanar PCBs in cod liver oil from the southern Baltic Sea from 1971 to 1989. <i>Marine Pollution Bulletin</i> , 1994 , 28, 259-262	6.7	31
240	Mycoremediation of hydrocarbons with basidiomycetes-a review. <i>Journal of Environmental Science</i> and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017 , 52, 148-155	2.2	30
239	Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius. <i>Food Chemistry</i> , 2016 , 200, 206-14	8.5	30
238	Mercury in fruiting bodies of dark honey fungus (Armillaria solidipes) and beneath substratum soils collected from spatially distant areas. <i>Journal of the Science of Food and Agriculture</i> , 2013 , 93, 853-8	4.3	30
237	Macro and trace elements in Common Chanterelle (Cantharellus cibarius) mushroom from the European background areas in Poland: Composition, accumulation, dietary exposure and data review for species. Journal of Environmental Science and Health - Part B Pesticides, Food	2.2	29
236	Concentrations and biomagnification of 17 chlordane compounds and other organochlorines in harbour porpoise (Phocoena phocoena) and herring from the southern Baltic Sea. <i>Chemosphere</i> , 1998 , 37, 2513-23	8.4	29
235	Clophen A60 composition and content of CBs, CNs, CDFs, and CDDs after 2D-HPLC, HRGC/LRMS, and HRGC/HRMS separation and quantification. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2005 , 40, 43-61	2.3	29
234	Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymetallic soils from SW China. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 142, 497-502	7	28
233	Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector. <i>Chemosphere</i> , 2019 , 233, 223-233	8.4	28
232	(90)Sr in King Bolete Boletus edulis and certain other mushrooms consumed in Europe and China. <i>Science of the Total Environment</i> , 2016 , 543, 287-294	10.2	28
231	Radioactive caesium (Cs and Cs) in mushrooms of the genus Boletus from the Reggio Emilia in Italy and Pomerania in Poland. <i>Isotopes in Environmental and Health Studies</i> , 2017 , 53, 620-627	1.5	28
230	Dioxin-like compound compositional profiles of furnace bottom ashes from household combustion in Poland and their possible associations with contamination status of agricultural soil and pine needles. <i>Chemosphere</i> , 2009 , 76, 255-63	8.4	28
229	Arsenic and arsenic speciation in mushrooms from China: A review. <i>Chemosphere</i> , 2020 , 246, 125685	8.4	28
228	Airborne chloronaphthalenes in Scots pine needles of Poland. <i>Chemosphere</i> , 2009 , 75, 1196-205	8.4	27
227	Butyltins in marine and freshwater sediments of Poland. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1997 , 58, 859-64	2.7	27
226	Chloronaphthalenes composition of several batches of Halowax 1051. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2006 , 41, 291-301	2.3	27
225	Persistent organochlorines in harbour porpoises from Puck Bay, Poland. <i>Marine Pollution Bulletin</i> , 1993 , 26, 162-165	6.7	27

224	Artificial Cs and natural K in mushrooms from the subalpine region of the Minya Konka summit and Yunnan Province in China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 615-627	5.1	27
223	Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: bioconcentration by mushroom and probable dietary intake by consumers. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 860-9	5.1	26
222	Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2017 , 52, 156-165	2.2	26
221	Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distinct locations: levels, possible intake and safety. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 107, 97-102	7	26
220	Radioactive artificial Cs and natural K activity in 21 edible mushrooms of the genus Boletus species from SW China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 8189-8199	5.1	26
219	Mixed poly-brominated/chlorinated biphenyls (PXBs): widespread food and environmental contaminants. <i>Environment International</i> , 2012 , 44, 118-27	12.9	26
218	A multispecies approach for monitoring persistent toxic substances in the Gulf of Gda\(\text{Baltic}\) sea). <i>Ecotoxicology and Environmental Safety</i> , 2008 , 69, 39-48	7	26
217	Some chemical contaminant of surface sediments at the Baltic Sea coastal region with special emphasis on androgenic and anti-androgenic compounds. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2006 , 41, 2127-62	2.3	26
216	Concentrations and fluxes of chloronaphthalenes in sediment from Lake Kitaura in Japan in past 15 centuries. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2004 , 39, 587-609	2.3	26
215	Polychlorinated biphenyls (PCBs) and their congener-specific accumulation in edible fish from the Gulf of Gdaßk, Baltic Sea. <i>Food Additives and Contaminants</i> , 2002 , 19, 779-95		26
214	Composition of PCB Isomers and Congeners in Technical Chlorofen Formulation Produced in Poland. <i>International Journal of Environmental Analytical Chemistry</i> , 1992 , 47, 129-136	1.8	26
213	Investigations of trace metals in long-tailed duck (Clangula hyemalis L.) from the GdaEk Bay. <i>Science of the Total Environment</i> , 1983 , 29, 269-76	10.2	26
212	Distribution of mercury in Gypsy Cortinarius caperatus mushrooms from several populations: an efficient accumulator species and estimated intake of element. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 110, 68-72	7	25
211	Occurrence and accumulation of mercury in two species of wild grown Pleurotus mushrooms from Southeastern Nigeria. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 84, 78-83	7	25
210	Evaluation of the activity concentrations of (137) Cs and (40)K in some Chanterelle mushrooms from Poland and China. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 20039-48	5.1	25
209	Specific accumulation of cadmium and other trace elements in Sarcodon imbricatus using ICP-MS with a chemometric approach. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2017 , 52, 361-366	2.2	24
208	Bio- and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in eastern Poland. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 21517-21522	5.1	24
207	Accumulation and distribution of mercury in fruiting bodies by fungus Suillus luteus foraged in Poland, Belarus and Sweden. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 2749-57	5.1	24

206	Mercury in certain boletus mushrooms from Poland and Belarus. <i>Journal of Environmental Science</i> and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014 , 49, 690-5	2.2	24
205	Mercury in Russula mushrooms: Bioconcentration by Yellow-ocher Brittle Gills Russula ochroleuca. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012 , 47, 1577-91	2.3	24
204	Perfluorinated compounds in some terrestrial and aquatic wildlife species from Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 715-9	2.3	24
203	Chlorinated cyclodiene pesticide residues in blue mussel, crab, and fish in the Gulf of Gdaßk, Baltic Sea. <i>Environmental Science & Environmental Scie</i>	10.3	24
202	Comments on "Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Mula, Turkey". doi:10.1007/s00128-011-0357-1. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 651-2	2.7 3	23
201	Mercury in Yellow-cracking Boletes Xerocomus subtomentosus mushrooms and soils from spatially diverse sites: assessment of bioconcentration potential by species and human intake. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental</i>	2.3	23
200	Polychlorinated Biphenyls, Dibenzo-p-dioxins, Dibenzofurans, and p,pEDDE in Livers of White-Tailed Sea Eagles from Eastern Germany, 1979¶998. <i>Environmental Science & amp; Technology</i> , 2003 , 37, 1249-1255	10.3	23
199	Mercury, lead, cadmium, manganese, copper, iron and zinc concentrations in poultry, rabbit and sheep from the northern part of Poland. <i>Science of the Total Environment</i> , 1994 , 141, 51-7	10.2	23
198	Mercury in forest mushrooms and topsoil from the Yunnan highlands and the subalpine region of the Minya Konka summit in the Eastern Tibetan Plateau. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 23730-23741	5.1	23
197	Cooking can decrease mercury contamination of a mushroom meal: Cantharellus cibarius and Amanita fulva. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 13352-13357	5.1	22
196	Radiocaesium pollution of fly agaric Amanita muscaria in fruiting bodies decreases with developmental stage. <i>Isotopes in Environmental and Health Studies</i> , 2019 , 55, 317-324	1.5	22
195	Mercury in the Grisette, Amanita vaginata Fr. and soil below the fruiting bodies. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2014 , 49, 521-6	2.2	22
194	Some toxic and essential trace metals in swine from northern Poland. <i>Science of the Total Environment</i> , 1993 , 136, 193-204	10.2	22
193	Congener-specific analysis of polychlorinated biphenyls in white-tailed sea eagles Haliaeetus albicilla collected in Poland. <i>Archives of Environmental Contamination and Toxicology</i> , 1994 , 26, 13-22	3.2	22
192	Congener-specific data of polychlorinated biphenyl residues in human adipose tissue in Poland. <i>Science of the Total Environment</i> , 1994 , 149, 113-9	10.2	22
191	Analysis of some metallic elements and metalloids composition and relationships in parasol mushroom Macrolepiota procera. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 15528-15537	5.1	21
190	Accumulation and distribution of metallic elements and metalloids in edible Amanita fulva mushrooms. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 137, 265-271	7	21
189	Radiocaesium in Cortinarius spp. mushrooms in the regions of the Reggio Emilia in Italy and Pomerania in Poland. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 23169-23174	5.1	21

(2005-2013)

188	Separation of closely eluting chloronaphthalene congeners by two-dimensional gas chromatography/quadrupole mass spectrometry: an advanced tool in the study and risk analysis of dioxin-like chloronaphthalenes. <i>Journal of Chromatography A</i> , 2013 , 1301, 209-14	4.5	21
187	Differential accumulation of HCBz and PeCBz in porcine ovarian follicles and their opposing actions on steroid secretion and CYP11, CYP17, 17HSD and CYP19 protein expression. A tissue culture approach. <i>Reproductive Toxicology</i> , 2011 , 31, 494-9	3.4	21
186	Halowax 1051 affects steroidogenesis, 17Ehydroxysteroid dehydrogenase (17EHSD) and cytochrome P450arom (CYP19) activity, and protein expression in porcine ovarian follicles. <i>Reproductive Toxicology</i> , 2011 , 32, 379-84	3.4	21
185	Survey of perfluorinated compounds (PFCs) in surface waters of Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2009 , 44, 1518-2	7 ^{2.3}	21
184	Metallic elements and metal poisoning among white-tailed sea eagles from the Baltic south coast. <i>Marine Pollution Bulletin</i> , 2001 , 42, 1190-3	6.7	21
183	Determination of Po and Pb in red-capped scaber (Leccinum aurantiacum): bioconcentration and possible related dose assessment. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 22606-22613	5.1	21
182	Mercury in stir-fried and raw mushrooms from the Boletaceae family from the geochemically anomalous region in the Midu county, China. <i>Food Control</i> , 2019 , 102, 17-21	6.2	20
181	Concentrations and bioconcentration factors of minerals in yellow-cracking Bolete (Xerocomus subtomentosus) mushroom collected in Notel Forest, Poland. <i>Journal of Food Science</i> , 2012 , 77, H202-6	3.4	20
180	Mineral constituents in common chanterelles and soils collected from a high mountain and lowland sites in Poland. <i>Journal of Mountain Science</i> , 2012 , 9, 697-705	2.1	20
179	Polychlorinated biphenyls, polycyclic aromatic hydrocarbons and alkylphenols in sediments from the Odra River and its tributaries, Poland. <i>Toxicological and Environmental Chemistry</i> , 2003 , 85, 51-60	1.4	20
178	Butyltins in sediments and three-spined stickleback (Gasterosteus aculleatus) from the marinas of the Gulf of Gdansk, Baltic Sea. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2002 , 37, 353-63	2.3	20
177	GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. <i>Environmental Pollution</i> , 2020 , 267, 115416	9.3	20
176	Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 25190-25206	5.1	20
175	Accumulation of metallic elements by Amanita muscaria from rural lowland and industrial upland regions. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2017 , 52, 184-190	2.2	19
174	Mercury bioaccumulation by Suillus bovinus mushroom and probable dietary intake with the mushroom meal. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 14549-59	5.1	19
173	TraceeElements in Leccinum scabrum mushrooms and topsoils from Ködzka Dale in Sudety Mountains, Poland. <i>Journal of Mountain Science</i> , 2013 , 10, 621-627	2.1	19
172	Rare earth elements in parasol mushroom Macrolepiota procera. Food Chemistry, 2017, 221, 24-28	8.5	19
171	Octanol/water partition coefficients of chloronaphthalenes. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2005 , 40, 1651-63	2.3	19

170	Computational prediction of 7-ethoxyresorufin-O-diethylase (EROD) and luciferase (luc) inducing potency for 75 congeners of chloronaphthalene. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2004 , 39, 1505-23	2.3	19
169	Polychlorinated biphenyl concentrations in cod-liver oil: evidence of a steady-state condition of these compounds in the Baltic area oils and levels noted in Atlantic oils. <i>Archives of Environmental Contamination and Toxicology</i> , 1994 , 27, 266-71	3.2	19
168	Most toxic and highly bioaccumulative PCB congeners in cod-liver oil of Baltic origin processed in Poland during the 1970s and 1980s, their TEQ-values and possible intake. <i>Science of the Total Environment</i> , 1994 , 145, 207-12	10.2	19
167	Cs and K in Cortinarius caperatus mushrooms (1996-2016) in Poland - Bioconcentration and estimated intake: Cs in Cortinarius spp. from the Northern Hemisphere from 1974 to 2016. <i>Environmental Pollution</i> , 2019 , 255, 113208	9.3	18
166	A retrospective investigation into the occurrence and human exposure to polychlorinated naphthalenes (PCNs), dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs through cod liver products (1972-2017). <i>Chemosphere</i> , 2019 , 231, 240-248	8.4	18
165	Pickling of chanterelle Cantharellus cibarius mushrooms highly reduce cadmium contamination. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 21733-21738	5.1	18
164	Po and Pb bioaccumulation and possible related dose assessment in parasol mushroom (Macrolepiota procera). <i>Environmental Science and Pollution Research</i> , 2017 , 24, 26858-26864	5.1	18
163	Comparison of historical record of PCDD/Fs, dioxin-like PCBs, and PCNs in sediment cores from Jiaozhou Bay and coastal Yellow Sea: implication of different sources. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2012 , 89, 1240-6	2.7	18
162	Specific pattern of tetrachloronaphthalenes in black cormorant. <i>Chemosphere</i> , 1997 , 35, 1737-1746	8.4	18
161	Isomer-specific analysis of PCBs including toxic coplanar isomers in canned cod livers commercially processed in Poland. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1992 , 194, 120-3		18
160	Trace metals in the soft tissues of scaup ducks (Aythya marila L.) wintering in Gdaßk bay, Baltic sea. <i>Science of the Total Environment</i> , 1987 , 65, 203-213	10.2	18
159	Mercury in raw mushrooms and in stir-fried in deep oil mushroom meals. <i>Journal of Food Composition and Analysis</i> , 2019 , 82, 103239	4.1	17
158	Mercury in Hazel Bolete Leccinum griseum and soil substratum: Distribution, bioconcentration and dietary exposure. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2015 , 50, 1259-64	2.3	17
157	Polonium 210Po in the phytobenthos from Puck Bay. <i>Journal of Environmental Monitoring</i> , 2003 , 5, 308-	11	17
156	Chlorinated hydrocarbons in fish-eating birds from the Gdalk Bay, Baltic sea. <i>Marine Pollution Bulletin</i> , 1980 , 11, 15-18	6.7	17
155	Metallic and metalloid elements in various developmental stages of Amanita muscaria (L.) Lam. <i>Fungal Biology</i> , 2020 , 124, 174-182	2.8	17
154	Evaluation of perfluoroalkyl substances in field-cultivated vegetables. <i>Chemosphere</i> , 2020 , 239, 124750	8.4	17
153	Mercury bio-concentration by Puffballs (Lycoperdon perlatum) and evaluation of dietary intake risks. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2012 , 89, 759-63	2.7	16

152	Mercury in Red Aspen Boletes (Leccinum aurantiacum) mushrooms and the soils. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2012 , 47, 1695-700	2.3	16	
151	Polychlorinated naphthalenes in three-spined stickleback Gasterosteus aculeatus from the gulf of GdaIk. <i>Chemosphere</i> , 1998 , 37, 2473-2487	8.4	16	
150	pp'DDE contamination of the blood and diet in central European populations. <i>Science of the Total Environment</i> , 2008 , 390, 45-52	10.2	16	
149	By-side impurities in chloronaphthalene mixtures of the Halowax series: all 75 chlorodibenzo-p-dioxins. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2005 , 40, 77-89	2.3	16	
148	Intake of 210Po, 234U and 238U radionuclides with beer in Poland. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2004 , 261, 661-663	1.5	16	
147	Mineral Constituents of Edible Field Parasol (Macrolepiota procera) Mushrooms and the Underlying Substrate from Upland Regions of Poland: Bioconcentration Potential, Intake Benefits, and Toxicological Risk. <i>Polish Journal of Environmental Studies</i> , 2016 , 25, 2445-2460	2.3	16	
146	Elemental composition of selected species of mushrooms based on a chemometric evaluation. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 173, 353-365	7	16	
145	Po and Pb in forest mushrooms of genus Leccinum and topsoil from northern Poland and its contribution to the radiation dose. <i>Chemosphere</i> , 2018 , 213, 133-140	8.4	16	
144	By-side impurities in chloronaphthalene mixtures of the Halowax series: all 135 chlorodibenzofurans. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2005 , 40, 63-76	2.3	15	
143	Organochlorine pesticide and polychlorinated biphenyl residues in slaughtered and game animal fats from the northern part of Poland. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1992 , 195, 17-21		15	
142	Metals and Organochlorines in a Female White-tailed Eagle from Uznam Island, Southwestern Baltic Sea. <i>Environmental Conservation</i> , 1984 , 11, 262-263	3.3	15	
141	Trace metals in muscle tissue of fish taken from the southern Baltic. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1985 , 181, 217-20		15	
140	Mineral constituents of conserved white button mushrooms: similarities and differences. <i>Roczniki Panstwowego Zakladu Higieny</i> , 2019 , 70, 15-25	1.2	15	
139	Fungi and environmental pollution. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2017 , 52, 147	2.2	14	
138	Bioconcentration potential and contamination with mercury of pantropical mushroom Macrocybe gigantea. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2014 , 49, 811-4	2.2	14	
137	Application and comparison of different chemometric approaches in QSPR modelling of supercooled liquid vapour pressures for chloronaphthalenes. <i>SAR and QSAR in Environmental Research</i> , 2007 , 18, 299-313	3.5	14	
136	Polychlorinated dibenzo-p-dioxins (PCDDs) and -furans (PCDFs) in pine needles of Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1969-78	2.3	14	
135	Trace metal levels in the raw and tinned squid Loligo patagonica. <i>Food Additives and Contaminants</i> , 1989 , 6, 483-8		14	

134	Metals and Organochlorines in Adult and Immature Males of White-tailed Eagle. <i>Environmental Conservation</i> , 1986 , 13, 69-70	3.3	14
133	Metals and Organochlorines in a Specimen of White-tailed Eagle. <i>Environmental Conservation</i> , 1983 , 10, 256-258	3.3	14
132	Chlorinated hydrocarbons in fish-eating birds wintering in the GdaEk Bay, 1981B2 and 1982B3. <i>Marine Pollution Bulletin</i> , 1984 , 15, 298-301	6.7	14
131	Chlorinated hydrocarbons in gulls from the Baltic south coast. <i>Marine Pollution Bulletin</i> , 1980 , 11, 75-80	6.7	14
130	Profile of trace elements in Parasol Mushroom (Macrolepiota procera) from Tucholskie Forest. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2011 , 46, 741-51	2.2	14
129	Compositional profiles, persistency and toxicity of polychlorinated naphthalene (PCN) congeners in edible cod liver products from 1972 to 2017. <i>Environmental Pollution</i> , 2020 , 260, 114035	9.3	14
128	Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs): Contamination in food, humans and dietary exposure. <i>Science of the Total Environment</i> , 2021 , 761, 143191	10.2	14
127	Effect of single and repeated in vitro exposure of ovarian follicles to o,p'-DDT and p,p'-DDT and their metabolites. <i>Polish Journal of Pharmacology</i> , 2004 , 56, 465-72		14
126	Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2016 , 51, 63-9	2.3	13
125	Cadmium, lead and some other trace elements in Larch Bolete mushrooms (Suillus grevillei) (Klotzsch) Sing., collected from the same site over two years. <i>Food Additives and Contaminants: Part B Surveillance</i> , 2013 , 6, 249-53	3.3	13
124	Dioxin-like compound load in bulk of Chlorofena technical chlorobiphenyl formulation from Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1959-68	2.3	13
123	Chlorobiphenyl constituents of Aroclor 1268, Chlorofen, Clophen T 64, KC-600, and KC-1000 technical formulations. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2005 , 40, 2171-87	2.3	13
122	Mercury concentrations in benthic animals and plants inhabiting the Gulf of Gdaßk, Baltic Sea. <i>Science of the Total Environment</i> , 1994 , 141, 45-49	10.2	13
121	Concentrations of trace metals in various tissues of the squid Loligo opalescens and their redistribution after canning. <i>Journal of the Science of Food and Agriculture</i> , 1991 , 54, 79-87	4.3	13
120	Persistent organochlorine residues in canned cod-livers of the southern Baltic origin. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1993 , 50, 929-34	2.7	13
119	Trace metals in squidIllex argentinus. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1988 , 187, 359-361		13
118	Organochlorine pesticides and polychlorinated biphenyls in livers of cod from the southern Baltic, 1981. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1984 , 179, 311-4		13
117	Trace metals in the bones of scaup ducks (Aythya marila L.) wintering in Gdaßk Bay, Baltic Sea, 1982-83 and 1983-84. <i>Science of the Total Environment</i> , 1986 , 53, 193-9	10.2	13

116	A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	13
115	Bio- and toxic elements in mushrooms from the city of Umeland outskirts, Sweden. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2017 , 52, 577-583	2.2	12
114	Isotopes of Po and Pb in Hazel bolete (Leccinellum pseudoscabrum) - bioconcentration, distribution and related dose assessment. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 18904-18912	5.1	12
113	Trace elements in Variegated Bolete (Suillus variegatus) fungi. <i>Chemical Papers</i> , 2012 , 66,	1.9	12
112	Total mercury in Yellow Knights (Tricholoma equestre) mushrooms and beneath soils. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2012 , 89, 755-8	2.7	12
111	Ratio variation of congener profiles of PCDD/Fs and dioxin-like PCBs in human milk during lactation. <i>Science of the Total Environment</i> , 2011 , 409, 1368-77	10.2	12
110	Levels and sources of planar and non-planar PCBs in pine needles across Poland. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2012 , 47, 688-703	2.3	12
109	Determination of perfluorinated alkylated substances in sediments and sediment core from the Gulf of Gdaßk, Baltic Sea. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2012 , 47, 428-34	2.3	12
108	Concentrations and spatial distribution of chlordanes and some other cyclodiene pesticides in Baltic plankton. <i>Science of the Total Environment</i> , 1998 , 215, 253-258	10.2	12
107	COMPRENDO: Focus and approach. <i>Environmental Health Perspectives</i> , 2006 , 114 Suppl 1, 98-100	8.4	12
106	Uranium and thorium content in long-tailed ducks (Clangula hyemalis L.). <i>Science of the Total Environment</i> , 1983 , 29, 277-80	10.2	12
105	Caesium, K and total K in Boletus edulis at different maturity stages: Effect of braising and estimated radiation dose intake. <i>Chemosphere</i> , 2021 , 268, 129336	8.4	12
104	Contents and Health Risk Assessment of Elements in Three Edible Ectomycorrhizal Fungi (Boletaceae) from Polymetallic Soils in Yunnan Province, SW China. <i>Biological Trace Element Research</i> , 2020 , 195, 250-259	4.5	11
103	Mineral constituents in Leccinum scabrum from lowland locations in the central Europe and their relation to concentration in forest topsoil. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2018 , 53, 546-560	2.2	10
102	Removal of cadmium and lead from heavy metals loaded PVABA immobilized Lentinus edodes. <i>Desalination and Water Treatment</i> , 2014 , 52, 4792-4801		10
101	By-side PCDD/Fs in technical PCB formulations of Kanechlor series. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2009 , 44, 1528-2	37 ^{2.3}	10
100	Trace metals in herring from the southern Baltic, 1983. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1986 , 182, 36-9		10
99	Organochlorine pesticides and polychlorinated biphenyls in sprats from the southern Baltic, 1981. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1984 , 178, 461-4		10

98	Organochlorine pesticides and polychlorinated biphenyls in flatfish from the southern Baltic, 1983. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1985, 181, 370-4		10
97	Differences in the action of lower and higher chlorinated polychlorinated naphthalene (PCN) congeners on estrogen dependent breast cancer cell line viability and apoptosis, and its correlation with Ahr and CYP1A1 expression. <i>Toxicology</i> , 2016 , 366-367, 53-9	4.4	10
96	Cs, K, and K in raw and stir-fried mushrooms from the Boletaceae family from the Midu region in Yunnan, Southwest China. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 32509-32517	5.1	9
95	Uranium (U, U) and thorium (Th, Th) in mushrooms of genus Leccinum and Leccinellum and the potential effective ionizing radiation dose assessment for human. <i>Chemosphere</i> , 2020 , 250, 126242	8.4	9
94	Bolete mushroom Boletus bainiugan from Yunnan as a reflection of the geographical distribution of Po, Pb and uranium (U, U, U) radionuclides, their intake rates and effective exposure doses. <i>Chemosphere</i> , 2020 , 253, 126585	8.4	9
93	Soil-to-mushroom transfer and diversity in total mercury content in two edible Laccaria mushrooms. <i>Environmental Earth Sciences</i> , 2016 , 75, 1	2.9	9
92	Selection of optimum formulation for biosorbing lead and cadmium from aquatic solution by using PVA-SAB immobilizing Lentinus edodes residue. <i>Desalination and Water Treatment</i> , 2011 , 31, 107-114		9
91	Thermodynamical and quantum-chemical characterization and chemometrical selection of representative congeners of trans-chloroazoxybenzene. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 135-42	2.3	9
90	Comprehensive two-dimensional GC (GCxGC) qMS analysis of tetrachloronaphthalenes in Halowax formulations. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1607-14	2.3	9
89	Selection of representative congener for polychlorinated trans-azobenzenes (PCt-ABs) based on comprehensive thermodynamical and quantum-chemical characterization. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2006 , 41, 1131-42	2.2	9
88	Multivariate analysis of the bioaccumulation of polychlorinated biphenyls (PCBs) in the marine pelagic food web from the southern part of the Baltic Sea, Poland. <i>Journal of Environmental Monitoring</i> , 2002 , 4, 929-41		9
87	Trace metals in flatfish from the southern Baltic, 1983. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1985 , 181, 117-20		9
86	Separation of polychlorinated biphenyls on liquid crystal and isotropic phases. <i>Journal of High Resolution Chromatography</i> , 1980 , 3, 301-302		9
85	Artificial (137)Cs and (134)Cs and natural (40)K in sclerotia of Wolfiporia extensa fungus collected across of the Yunnan land in China. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2015 , 50, 654-8	2.2	9
84	An evaluation of the occurrence and trends in Cs and K radioactivity in King Bolete Boletus edulis mushrooms in Poland during 1995-2019. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 32405	5.1	9
83	PBDEs in cod (Gadus morhua) liver products (1972-2017): Occurrence and human exposure. <i>Chemosphere</i> , 2019 , 232, 63-69	8.4	8
82	Preferential accumulation of inorganic elements in Amanita muscaria from North-eastern Poland. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 968-974	2.3	8
81	N-octanol-water partition coefficients (log K(OW)) of 399 congeners of polychlorinated azoxybenzenes (PCAOBs) determined by QSPR- and ANN-based approach. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> 2011 46, 1748-6	2.3 2	8

(2020-1999)

80	Response to the comment on: Butyltin residues in sediment, fish, fish-eating birds, harbour porpoise and human tissues from the polish coast of the Baltic Sea. <i>Marine Pollution Bulletin</i> , 1999 , 38, 61-63	6.7	8
79	Organochlorine pesticides and polychlorinated biphenyls in livers of cod from the southern Baltic, 1983. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1986 , 182, 224-7		8
78	Organochlorine pesticides and polychlorinated biphenyls in cod from the southern Baltic, 1983. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1986 , 182, 136-9		8
77	Evaluation of vulnerability of Suillus variegatus and Suillus granulatus mushrooms to sequester mercury in fruiting bodies. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2016 , 51, 540-5	2.2	8
76	Amanita muscaria: bio-concentration and bio-indicative potential for metallic elements. <i>Environmental Earth Sciences</i> , 2019 , 78, 1	2.9	8
75	Distribution and possible dietary intake of radioactive 137Cs, 40K and 226Ra with the pantropical mushroom Macrocybe gigantea in SW China. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2015 , 50, 941-5	2.3	8
74	Radiotoxic Po and Pb in uncooked and cooked Boletaceae mushrooms from Yunnan (China) including intake rates and effective exposure doses. <i>Journal of Environmental Radioactivity</i> , 2020 , 217, 106236	2.4	7
73	Occurrence, distribution and estimated intake of mercury and selenium from sclerotia of the medicinal fungus Wolfiporia cocos from China. <i>Chemosphere</i> , 2020 , 247, 125928	8.4	7
72	QSAR and ANN for the estimation of water solubility of 209 polychlorinated trans-azobenzenes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 155-66	2.3	7
71	Competitive sorption efficiency studies of Cd(II), Cu(II) and Pb(II) by powdered mycelium of Cloud Ear Fungus Auricularia polytricha. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2011 , 46, 1776-82	2.3	7
70	Spatial distribution of TCPM-H and TCPM-OH in blue mussel and fish from the Gulf of GdaEk, Baltic Sea. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1998 , 61, 411-8	2.7	7
69	Instrumental neutron activation analysis of extractable organohalogens in marine mammal, harbour porpoise (Phocoena phocoena) and its feed, Atlantic herring (Clupea harengus), from the Baltic Sea. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2008 , 278, 263-266	1.5	7
68	Instrumental Neutron Activation Analysis of Extractable. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2003 , 255, 235-237	1.5	7
67	Prediction of log K(OA), T(C), and log P(L) for 281 chlorosubstituted pyrenes as the key parameters featuring environmental transport and fate of these compounds. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2003 , 38, 1761-80	2.3	7
66	Organochlorine pesticides and polychlorinated biphenyls in herring from the southern Baltic, 1981. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1984 , 179, 20-3		7
65	Organochlorine pesticides and polychlorinated biphenyls in sprats from the southern Baltic, 1983. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1985 , 181, 482-5		7
64	ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland		7
63	137Caesium, 40Potassium and potassium in raw and deep-oil stir-fried mushroom meals from Yunnan in China. <i>Journal of Food Composition and Analysis</i> , 2020 , 91, 103538	4.1	6

62	Contamination, bioconcentration and distribution of mercury in Tricholoma spp. mushrooms from southern and northern regions of Europe. <i>Chemosphere</i> , 2020 , 251, 126614	8.4	6
61	Artificial (Cs) and natural (K) radioactivity and total potassium in medicinal fungi from Yunnan in China. <i>Isotopes in Environmental and Health Studies</i> , 2020 , 56, 324-333	1.5	6
60	The sorption of Cd(II) from aqueous solutions by fixed Lentinus edodes mushroom flesh particles. <i>Desalination and Water Treatment</i> , 2012 , 46, 21-31		6
59	Concentrations of heavy metals and PCBs in the tissues of European beavers (Castor fiber) captured in northeastern Poland. <i>European Journal of Wildlife Research</i> , 2012 , 58, 655-660	2	6
58	Sediment quality assessment in the Gulf of Gdaßk (Baltic Sea) using complementary lines of evidence. <i>Environmental Management</i> , 2009 , 43, 1313-20	3.1	6
57	Use of quantitative-structure property relationship (QSPR) and artificial neural network (ANN) based approaches for estimating the octanol-water partition coefficients of the 209 chlorinated trans-azobenzene congeners. <i>Journal of Environmental Science and Health - Part B Pesticides, Food</i>	2.2	6
56	QSPR models for prediction of the soil sorption coefficient (log KOC) values of 209 polychlorinated trans-azobenzenes (PCt-ABs). <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2012 , 47, 441-9	2.3	6
55	By-side chlorodibenzo-P-dioxins and chlorodibenzofurans in technical chlorobiphenyl formulations of aroclor 1268, chlorofen, and clophen T 64. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2005 , 40, 1665-78	2.3	6
54	Uranium and thorium in muscle tissue of fish taken from the southern Baltic. <i>Helgol</i> g nder <i>Meeresuntersuchungen</i> , 1990 , 44, 31-38		6
53	Trace metals in cod from the southern Baltic, 1983. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1986 , 182, 228-31		6
52	Trace metals in sprats from the southern Baltic, 1983. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1986 , 182, 40-3		6
51	Organochlorine pesticides and polychlorinated biphenyls in herring from the southern Baltic, 1983. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1986 , 182, 131-5		6
50	Mercury in traditionally foraged species of fungi (macromycetes) from the karst area across Yunnan province in China. <i>Applied Microbiology and Biotechnology</i> , 2020 , 104, 9421-9432	5.7	6
49	Distribution and bioconcentration of some elements in the edible mushroom from locations in Poland. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2021 , 56, 396-414	2.2	6
48	The effects of different cooking modes on the Cs, K, and total K content in Boletus edulis (King Bolete) mushrooms. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 12441-12446	5.1	6
47	Beta-emitting radionuclides in wild mushrooms and potential radiotoxicity for their consumers. <i>Trends in Food Science and Technology</i> , 2021 , 114, 672-683	15.3	6
46	Polybrominated dibenzo-p-dioxins (PBDDs) and - dibenzofurans (PBDFs) in cod (Gadus morhua) liver-derived products from 1972 to 2017. <i>Science of the Total Environment</i> , 2020 , 722, 137840	10.2	5
45	As, Cd, Cr, Hg, Ni and Pb in Soil from Eastern Slope of Mt. Gongga, Eastern Tibet, China. <i>Advance Journal of Food Science and Technology</i> , 2013 , 5, 775-782	0.1	5

44	Hexachlorobenzene and pentachlorobenzene accumulation, metabolism and effect on steroid secretion and on CYP11A1 and CYP19 expression in cultured human placental tissue. <i>Reproductive Toxicology</i> , 2014 , 43, 102-10	3.4	5
43	Instrumental neutron activation analysis of extractable organohalogens in the Antarctic Weddell seal (Leptonychotes weddelli). <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2007 , 272, 501-504	1.5	5
42	Mercury concentration of stickleback Gasterosteus aculeatus from the Gulf of Gdaßk. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1993 , 51, 710-5	2.7	5
41	Mercury in Certain Mushroom Species in Poland 2010 , 349-383		5
40	Enhancing the lithium content of white button mushrooms using LiNO fortified compost: effects on the uptake of Li and other trace elements. <i>Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment,</i> 2021 , 38, 1193-1205	3.2	5
39	Cs and K activities and total K distribution in the sclerotia of the Wolfiporia cocos fungus from China. <i>Journal of Environmental Radioactivity</i> , 2021 , 231, 106549	2.4	5
38	Inorganic elemental concentrations in birch bolete mushroom (Leccinum scabrum) and top soil: contamination profiles, bioconcentation and annual variations. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2018 , 53, 831-839	2.2	5
37	Accumulation of Minerals by Leccinum scabrum from Two Large Forested Areas in Central Europe: Notecka Wilderness and Tuchola Forest (Pinewoods). <i>Chemistry and Biodiversity</i> , 2020 , 17, e2000264	2.5	4
36	Concentrations and 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents of non-ortho coplanar PCBs in adipose fat of Poles. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1994 , 53, 267-73	2.7	4
35	Organochlorine pesticides and polychlorinated biphenyls in cod from the southern Baltic, 1981. <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1985 , 181, 316-7		4
34	Chlorinated hydrocarbons in diving ducks wintering in GdaEk Bay, Baltic Sea. <i>Science of the Total Environment</i> , 1982 , 24, 119-27	10.2	4
33	The use of Li2O fortified growing compost to enhance lithiation in white Agaricus bisporus mushrooms: Li uptake and co-accumulation of other trace elements. <i>European Food Research and Technology</i> , 2021 , 247, 2239-2252	3.4	4
32	Accumulation Pattern of Inorganic Elements in Scaly Tooth Mushroom (Sarcodon imbricatus) from Northern Poland. <i>Chemistry and Biodiversity</i> , 2020 , 17, e2000167	2.5	4
31	Radiocaesium in Tricholoma spp. from the Northern Hemisphere in 1971-2016. <i>Science of the Total Environment</i> , 2022 , 802, 149829	10.2	4
30	Dioxin-like polybrominated biphenyls (PBBs) and ortho-substituted PBBs in edible cod (Gadus morhua) liver oils and canned cod livers. <i>Chemosphere</i> , 2020 , 248, 126109	8.4	3
29	Prediction of subcooled vapor pressures (log PL) of 399 polychlorinated trans-azoxybenzenes by using the QSPR and ANN approach. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2012 , 47, 450-61	2.3	3
28	QSPR for prediction of subcooled vapor pressures (log PL) of polychlorinated trans-azobenzenes. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012 , 47, 660-9	2.2	3
27	Metals in edible fish from Vistula River and Dead Vistula River channel, Baltic Sea. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2012, 47, 296-305	2.2	3

26	The aqueous solubility of some herbicidal by-side toxic impurities: predicted data of the 399 chlorinated trans-azoxybenzene congeners. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2012 , 47, 275-87	2.2	3
25	Comparison of two acid extraction methods for determination of minerals in soils beneath to Larch Bolete (Suillus grevillei) and aimed to estimate minerals sequestration potential in fruiting bodies. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental	2.3	3
24	Trace metals and organochlorines in plankton from the southern Baltic. <i>Marine Pollution Bulletin</i> , 1984 , 15, 416-418	6.7	3
23	Chlorinated hydrocarbons in fish-eating birds wintering in the Gdaßk Bay, Baltic Sea, 1980¶981. <i>Marine Pollution Bulletin</i> , 1982 , 13, 132-135	6.7	3
22	Photodegradation of polychlorinated naphthalene in mixtures. <i>Environmental Pollution</i> , 2020 , 263, 114	6 3 2 ₅	3
21	Lithiation of white button mushrooms (Agaricus bisporus) using lithium-fortified substrate: effect of fortification levels on Li uptake and on other trace elements. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 48905-48920	5.1	3
20	Mercury and selenium in developing and mature fruiting bodies of Amanita muscaria. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 60145-60153	5.1	3
19	Effect of drying, blanching, pickling and maceration on the fate of K, total K and Cs in bolete mushrooms and dietary intake. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	3
18	Mercury in Sclerotia of Wolfiporia Extensa (Peck) Ginns Fungus Collected Across of the Yunnan Land. <i>Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis</i> , 2016 , 36, 3083-6		3
17	By-side chlorobenzenes and chlorophenols in technical chlorobiphenyl formulations of Aroclor 1268, Chlorofen, Clophen T 64, Kanechlor 600, and Kanechlor 1000. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2006 , 41, 35-46	2.3	2
16	137Cs and 40K activity concentrations in edible wild mushrooms from China regions during the 2014 2 016 period. <i>Foods and Raw Materials</i> , 2022 , 86-96	1.3	2
15	An overview of the lithium content and lithiation of the cultivable macrofungal species, Agaricus bisporus and Pleurotus spp <i>Trends in Food Science and Technology</i> , 2022 , 119, 338-347	15.3	2
14	Nutritional and Other Trace Elements and Their Associations in Raw King Bolete Mushrooms, International Journal of Environmental Research and Public Health, 2021 , 19,	4.6	2
13	Impact of Mushrooms' Vegetative Places and Morphological Parts of a Fruiting Body on the Fatty Acids Profile of Wild Leccinum aurantiacum and Leccinum versipelle. <i>Chemistry and Biodiversity</i> , 2020 , 17, e2000032	2.5	1
12	Estimation of K(OA) values of 209 polychlorinated trans-azobenzenes by PM6 and DFT methods. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012 , 47, 562-70	2.2	1
11	Source identification of polychlorinated naphthalenes, dioxins and related compounds in pine needles from Tokyo Bay, Japan and Poland. <i>Bunseki Kagaku</i> , 2004 , 53, 1399-1409	0.2	1
10	Macroelements content of Common Pacific squid (Loligo opalescens). <i>Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung</i> , 1992 , 195, 423-5		1
9	On the occurrence, origin, and intake of the nuclides, Po and Pb, in sclerotia of Wolfiporia cocos collected in China <i>Environmental Science and Pollution Research</i> , 2022 , 29, 27209	5.1	1

LIST OF PUBLICATIONS

8	Vertical profiles of legacy organochlorine pesticides in sediment cores from lake Nakaumi, Japan <i>Chemosphere</i> , 2021 , 290, 133254	8.4	1
7	Extractable Organic Halogen(EOX) and Man-Made Organochlorine Compounds in Soils and Sediments from Northern Poland <i>Journal of Environmental Chemistry</i> , 1997 , 7, 7-13	0.3	1
6	Lithiation of mushrooms using compost fortified with LiOH: Effect of fortification levels on Li uptake and co-accumulation of other trace elements. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2021 , 56, 761-770	2.2	1
5	Total mercury and methylmercury (MeHg) in braised and crude Boletus edulis carpophores during various developmental stages. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	1
4	Po and Pb in King Bolete () and Related Mushroom Species: Estimated Effective Radiation Dose and Geospatial Distribution in Central and Eastern Europe. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	1
3	Occurrence, distribution, and associations of essential and non-essential elements in the medicinal and edible fungus "Fuling" from southern China <i>Science of the Total Environment</i> , 2022 , 831, 155011	10.2	0
2	The toxicological profile of polychlorinated naphthalenes (PCNs) Science of the Total Environment, 2022 , 837, 155764	10.2	0
1	Evaluation of flame retardancy and flexural property on prepared plastic disks containing known concentrations of flame retardants through simulated weathering tests. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2021 , 56, 1287-12	2.3 295	