
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8400519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial Molecular Machines. Angewandte Chemie - International Edition, 2000, 39, 3348-3391.	7.2	2,309
2	Handbook of Photochemistry. , 0, , .		1,335
3	Photochemical Conversion of Solar Energy. ChemSusChem, 2008, 1, 26-58.	3.6	1,038
4	A Molecular Elevator. Science, 2004, 303, 1845-1849.	6.0	991
5	Molecular devices and machines. Nano Today, 2007, 2, 18-25.	6.2	593
6	Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine. Journal of the American Chemical Society, 1997, 119, 2679-2681.	6.6	525
7	Artificial Molecular-Level Machines:  Which Energy To Make Them Work?. Accounts of Chemical Research, 2001, 34, 445-455.	7.6	512
8	Light powered molecular machines. Chemical Society Reviews, 2009, 38, 1542.	18.7	474
9	Autonomous artificial nanomotor powered by sunlight. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1178-1183.	3.3	460
10	Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotechnology, 2015, 10, 70-75.	15.6	367
11	Photo- and Redox-Driven Artificial Molecular Motors. Chemical Reviews, 2020, 120, 200-268.	23.0	355
12	Acidâ^'Base Controllable Molecular Shuttlesâ€. Journal of the American Chemical Society, 1998, 120, 11932-11942.	6.6	346
13	A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. Angewandte Chemie - International Edition, 1998, 37, 333-337.	7.2	328
14	A photochemically driven molecular-level abacus. Chemistry - A European Journal, 2000, 6, 3558-3574.	1.7	316
15	Molecules That Make Decisions. Angewandte Chemie - International Edition, 2007, 46, 5472-5475.	7.2	298
16	Operating Molecular Elevators. Journal of the American Chemical Society, 2006, 128, 1489-1499.	6.6	280
17	A Three-Pole Supramolecular Switchâ€. Journal of the American Chemical Society, 1999, 121, 3951-3957.	6.6	275
18	Molecular Logic Circuits. ChemPhysChem, 2003, 4, 49-59.	1.0	262

2

#	Article	IF	CITATIONS
19	Switching of Pseudorotaxanes and Catenanes Incorporating a Tetrathiafulvalene Unit by Redox and Chemical Inputsâ€. Journal of Organic Chemistry, 2000, 65, 1924-1936.	1.7	251
20	Electrochemical properties of CdSe and CdTe quantum dots. Chemical Society Reviews, 2012, 41, 5728.	18.7	238
21	Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nature Chemistry, 2015, 7, 634-640.	6.6	229
22	Dendrimers with a Photoactive and Redox-Active [Ru(bpy)3]2+-Type Core:Â Photophysical Properties, Electrochemical Behavior, and Excited-State Electron-Transfer Reactions. Journal of the American Chemical Society, 1999, 121, 6290-6298.	6.6	224
23	Artificial nanomachines based on interlocked molecular species: recent advances. Chemical Society Reviews, 2006, 35, 1135.	18.7	224
24	Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes. Chemistry - A European Journal, 1997, 3, 152-170.	1.7	212
25	A Simple Molecular Machine Operated by Photoinduced Proton Transfer. Journal of the American Chemical Society, 2007, 129, 13378-13379.	6.6	195
26	Molecular Machines Working on Surfaces and at Interfaces. ChemPhysChem, 2008, 9, 202-220.	1.0	193
27	Luminescent sensors based on quantum dot–molecule conjugates. Chemical Society Reviews, 2015, 44, 4275-4289.	18.7	192
28	A Redox-Driven Multicomponent Molecular Shuttle. Journal of the American Chemical Society, 2007, 129, 12159-12171.	6.6	180
29	Molecular Meccano. 4. The Self-Assembly of [2]Catenanes Incorporating Photoactive .piExtended Systems. Journal of the American Chemical Society, 1995, 117, 11171-11197.	6.6	168
30	Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dualâ€Mode (Oxidative) Tj ETQq0 (0 0 rgBT /(Overlock 10 Tf
31	Oligocatenanes Made to Order1. Journal of the American Chemical Society, 1998, 120, 4295-4307.	6.6	157
32	Viologen-Calix[6]arene Pseudorotaxanes. Ion-Pair Recognition and Threading/Dethreading Molecular Motions. Journal of Organic Chemistry, 2004, 69, 5881-5887.	1.7	143
33	Artificial molecular shuttles: from concepts to devices. Journal of Materials Chemistry, 2009, 19, 2279.	6.7	136
34	From observed to corrected luminescence intensity of solution systems: an easy-to-apply correction method for standard spectrofluorimeters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 159-170.	2.0	134
35	A Simple Unimolecular Multiplexer/Demultiplexer. Angewandte Chemie - International Edition, 2008, 47, 6240-6243.	7.2	133
36	Constructing Molecular Machinery:  A Chemically-Switchable [2]Catenane. Journal of the American	6.6	130

Chemical Society, 2000, 122, 3542-3543.

#	Article	IF	CITATIONS
37	Self-Assembly of [n]Rotaxanes Bearing Dendritic Stoppers⊥. Journal of the American Chemical Society, 1996, 118, 12012-12020.	6.6	128
38	Photoinduced Electron Transfer in a Triad That Can Be Assembled/Disassembled by Two Different External Inputs. Toward Molecular-Level Electrical Extension Cables. Journal of the American Chemical Society, 2002, 124, 12786-12795.	6.6	128
39	The Bottom-Up Approach to Molecular-Level Devices and Machines. Chemistry - A European Journal, 2002, 8, 5524-5532.	1.7	128
40	Allâ€Optical Integrated Logic Operations Based on Chemical Communication between Molecular Switches. Chemistry - A European Journal, 2009, 15, 178-185.	1.7	124
41	Light to investigate (read) and operate (write) molecular devices and machines. Chemical Society Reviews, 2014, 43, 4068-4083.	18.7	123
42	Processing Energy and Signals by Molecular and Supramolecular Systems. Chemistry - A European Journal, 2008, 14, 26-39.	1.7	120
43	Photochemical and Electronic Properties of Conjugated Bis(azo) Compounds: An Experimental and Computational Study. Chemistry - A European Journal, 2004, 10, 2011-2021.	1.7	119
44	Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. Angewandte Chemie - International Edition, 2012, 51, 1611-1615.	7.2	119
45	A Molecular-Level Plug/Socket System: Electronic Energy Transfer from a Binaphthyl Unit Incorporated into a Crown Ether to an Anthracenyl Unit Linked to an Ammonium Ion. Chemistry - A European Journal, 1999, 5, 984-989.	1.7	117
46	Photochemistry and photophysics of coordination compounds: An extended view. Coordination Chemistry Reviews, 1998, 171, 3-16.	9.5	116
47	Ferrocene-Containing Carbohydrate Dendrimers. Chemistry - A European Journal, 2002, 8, 673-684.	1.7	110
48	Photoactivated Directionally Controlled Transit of a Non‧ymmetric Molecular Axle Through a Macrocycle. Angewandte Chemie - International Edition, 2012, 51, 4223-4226.	7.2	109
49	Polynuclear metal complexes of nanometre size. A versatile synthetic strategy leading to luminescent and redox-active dendrimers made of an osmium(II)-based core and ruthenium(II)-based units in the branches. Journal of Materials Chemistry, 1997, 7, 1227-1236.	6.7	108
50	Light operated molecular machines. Chemical Communications, 2011, 47, 2483-2489.	2.2	104
51	A Three-Station DNA Catenane Rotary Motor with Controlled Directionality. Nano Letters, 2013, 13, 2303-2308.	4.5	103
52	Simple Molecular Machines: Chemically Driven Unthreading and Rethreading of a[2]Pseudorotaxane. Angewandte Chemie International Edition in English, 1996, 35, 978-981.	4.4	101
53	Photoactive Azobenzene-Containing Supramolecular Complexes and Related Interlocked Molecular Compounds. Chemistry - A European Journal, 1999, 5, 860-875.	1.7	99
54	Shuttling Dynamics in an Acid-Base-Switchable [2]Rotaxane. ChemPhysChem, 2005, 6, 2145-2152.	1.0	99

#	Article	IF	CITATIONS
55	Probing Donorâ^'Acceptor Interactions and <i>Co</i> -Conformational Changes in Redox Active Desymmetrized [2]Catenanes. Journal of the American Chemical Society, 2010, 132, 1110-1122.	6.6	96
56	Controlled disassembling of self-assembling systems: Toward artificial molecular-level devices and machines. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4814-4817.	3.3	94
57	Artificial Molecular Motors Powered by Light. Australian Journal of Chemistry, 2006, 59, 157.	0.5	94
58	Toward Directionally Controlled Molecular Motions and Kinetic Intra- and Intermolecular Self-Sorting: Threading Processes of Nonsymmetric Wheel and Axle Components. Journal of the American Chemical Society, 2013, 135, 9924-9930.	6.6	91
59	Artificial molecular-level machines. Dethreading–rethreading of a pseudorotaxane powered exclusively by light energy. Chemical Communications, 2001, , 1860-1861.	2.2	90
60	Rull-Polypyridine Complexes Covalently Linked to Electron Acceptors as Wires for Light-Driven Pseudorotaxane-Type Molecular Machines. Chemistry - A European Journal, 1998, 4, 2413-2422.	1.7	89
61	Chemical On/Off Switching of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle. Journal of the American Chemical Society, 2019, 141, 9129-9133.	6.6	88
62	Making and Operating Molecular Machines: A Multidisciplinary Challenge. ChemistryOpen, 2018, 7, 169-179.	0.9	87
63	Simple molecular-level machines. Interchange between different threads in pseudorotaxanes. New Journal of Chemistry, 1998, 22, 1061-1065.	1.4	86
64	Photoactivated Artificial Molecular Machines that Can Perform Tasks. Advanced Materials, 2020, 32, e1906064.	11.1	83
65	A Mechanically Interlocked Bundle. Chemistry - A European Journal, 2004, 10, 1926-1935.	1.7	80
66	Dual-Mode "Co-Conformational―Switching in Catenanes Incorporating Bipyridinium and Dialkylammonium Recognition Sites Molecular Meccano, Part 63. For Part 62, see: R. Ashton, C. L. Brown, J. Cao, Y. Lee, P. Newton, M. Raymo, F. Stoddart, P. White, D. J. Williams, Eur. J. Org. Chem. 2001, 957–965 Chemistry - A European Journal, 2001, 7, 3482.	1.7	79
67	Artificial Molecular Motors and Machines: Design Principles and Prototype Systems. , 0, , 1-27.		74
68	A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot. Chemical Communications, 2011, 47, 325-327.	2.2	74
69	Controlling Catenations, Properties and Relative Ring-Component Movements in Catenanes with Aromatic Fluorine Substituentsâ€. Journal of the American Chemical Society, 1997, 119, 12503-12513.	6.6	72
70	Solution and Solid-State Emission Toggling of a Photochromic Hydrazone. Journal of the American Chemical Society, 2018, 140, 12323-12327.	6.6	72
71	Towards Controlling the Threading Direction of a Calix[6]arene Wheel by Using Nonsymmetric Axles. Chemistry - A European Journal, 2009, 15, 3230-3242.	1.7	70
72	Controlling Multivalent Interactions in Triply-Threaded Two-Component Superbundles. Chemistry - A European Journal, 2003, 9, 5348-5360.	1.7	68

ALBERTO CREDI

#	Article	IF	CITATIONS
73	Signal processing with multicomponent systems based on metal complexes. Coordination Chemistry Reviews, 2010, 254, 2267-2280.	9.5	67
74	Cyclophanes and [2]Catenanes as Ligands for Transition Metal Complexes: Synthesis, Structure, Absorption Spectra, and Excited State and Electrochemical Properties. Chemistry - A European Journal, 1998, 4, 590-607.	1.7	64
75	Unravelling the Shuttling Mechanism in a Photoswitchable Multicomponent Bistable Rotaxane. Angewandte Chemie - International Edition, 2008, 47, 3536-3539.	7.2	64
76	Reversible Photoswitching of Rotaxane Character and Interplay of Thermodynamic Stability and Kinetic Lability in a Selfâ€Assembling Ring–Axle Molecular System. Chemistry - A European Journal, 2010, 16, 11580-11587.	1.7	64
77	pH-sensitive Ru(II) and Os(II) bis(2,2′:6′,2″-terpyridine) complexes: A photophysical investigation. Inorganica Chimica Acta, 2007, 360, 1102-1110.	1.2	63
78	Aggregation of self-assembling branched [n]rotaxanes. New Journal of Chemistry, 1998, 22, 959-972.	1.4	62
79	Photoinduced electron flow in a self-assembling supramolecular extension cable. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18411-18416.	3.3	62
80	Luminescent and Redox-Active Iridium(III)-Cyclometalated Compounds with Terdentate Ligands. Inorganic Chemistry, 1997, 36, 5947-5950.	1.9	61
81	Photochemical switching of luminescence and singlet oxygen generation by chemical signal communication. Chemical Communications, 2009, , 1484.	2.2	60
82	Electrochemistry of coordination compounds: an extended view. Coordination Chemistry Reviews, 1999, 185-186, 233-256.	9.5	59
83	Wire-Type Ruthenium(II) Complexes with Terpyridine-Containing [2]Rotaxanes as Ligands: Synthesis, Characterization, and Photophysical Properties. Chemistry - A European Journal, 2006, 12, 3233-3242.	1.7	58
84	Molecular Photochemionics. Advanced Functional Materials, 2007, 17, 740-750.	7.8	58
85	Pseudorotaxanes and Catenanes Containing a Redox-Active Unit Derived from Tetrathiafulvalene. European Journal of Organic Chemistry, 1999, 1999, 985-994.	1.2	56
86	Polyvalent Scaffolds. Counting the Number of Seats Available for Eosin Guest Molecules in Viologen-Based Host Dendrimers. Journal of the American Chemical Society, 2004, 126, 568-573.	6.6	55
87	Redox-Induced Ring Shuttling and Evidence for Folded Structures in Long and Flexible Two-Station Rotaxanes. Collection of Czechoslovak Chemical Communications, 2003, 68, 1488-1514.	1.0	53
88	Chiral Supramolecular Switches Based on (<i>R</i>)â€Binaphthalene–Bipyridinium Guests and Cucurbituril Hosts. Chemistry - A European Journal, 2012, 18, 16911-16921.	1.7	53
89	Solvent―and Lightâ€Controlled Unidirectional Transit of a Nonsymmetric Molecular Axle Through a Nonsymmetric Molecular Wheel. Chemistry - A European Journal, 2012, 18, 16203-16213.	1.7	53
90	Multistable Self-Assembling System with Three Distinct Luminescence Outputs: Prototype of a Bidirectional Half Subtractor and Reversible Logic Device. Journal of Physical Chemistry C, 2010, 114, 3209-3214.	1.5	52

#	Article	IF	CITATIONS
91	Towards Organization of Molecular Machines at Interfaces: Langmuir Films and Langmuir–Blodgett Multilayers of an Acid–Base Switchable Rotaxane. Advanced Materials, 2006, 18, 1291-1296.	11.1	49
92	Light-powered molecular devices and machines. Photochemical and Photobiological Sciences, 2010, 9, 1561-1573.	1.6	49
93	Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system. New Journal of Chemistry, 2001, 25, 25-31.	1.4	47
94	A Molecular Plugâ^'Socket Connector. Journal of the American Chemical Society, 2007, 129, 4633-4642.	6.6	47
95	Ruthenium(ii) complexes based on tridentate polypyridine ligands that feature long-lived room-temperature luminescence. Chemical Communications, 2013, 49, 9110.	2.2	47
96	Photoprocesses. Current Opinion in Chemical Biology, 1997, 1, 506-513.	2.8	46
97	Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surface and Coatings Technology, 2007, 202, 13-22.	2.2	46
98	Selfâ€Assembly of a Double Calix[6]arene Pseudorotaxane in Oriented Channels. Chemistry - A European Journal, 2008, 14, 98-106.	1.7	46
99	Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coordination Chemistry Reviews, 2016, 325, 125-134.	9.5	46
100	Structural and Size Effects on the Spectroscopic and Redox Properties of CdSe Nanocrystals in Solution: The Role of Defect States. ChemPhysChem, 2011, 12, 2280-2288.	1.0	45
101	Light-powered molecular-scale machines. Pure and Applied Chemistry, 2003, 75, 541-547.	0.9	44
102	Light Control of Stoichiometry and Motion in Pseudorotaxanes Comprising a Cucurbit[7]uril Wheel and an Azobenzeneâ€Bipyridinium Axle. Chemistry - A European Journal, 2014, 20, 10737-10744.	1.7	44
103	Reversible modulation of helicity in a binaphthyl–bipyridinium species and its cucurbit[8]uril complexes. Chemical Communications, 2012, 48, 7577.	2.2	43
104	A Comparison of Shuttling Mechanisms in Two Constitutionally Isomeric Bistable Rotaxane-Based Sunlight-Powered Nanomotors. Australian Journal of Chemistry, 2006, 59, 193.	0.5	42
105	Photophysical, photochemical and electrochemical properties of a series of aromatic electron acceptors based on N-heterocycles. Inorganica Chimica Acta, 2007, 360, 1072-1082.	1.2	42
106	Multifunctional switching of a photo- and electro-chemiluminescent iridium–dithienylethene complex. Chemical Communications, 2012, 48, 8652.	2.2	42
107	Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components. Journal of the American Chemical Society, 2014, 136, 14245-14254.	6.6	42
108	Reversible Photoswitching and Isomerâ€Dependent Diffusion of Single Azobenzene Tetramers on a Metal Surface. Angewandte Chemie - International Edition, 2018, 57, 15034-15039.	7.2	42

#	Article	IF	CITATIONS
109	Supramolecular Photochemistry and Photophysics. A Cylindrical Macrotricyclic Receptor and Its Adducts with Protons, Ammonium Ions, and a Pt(II) Complex. Journal of the American Chemical Society, 1994, 116, 5741-5746.	6.6	40
110	Absorption and Emission Properties of Di- and Trinuclear Ruthenium(II) Rack-Type Complexes. European Journal of Inorganic Chemistry, 1999, 1999, 1409-1414.	1.0	40
111	Structural Implications on the Electrochemical and Spectroscopic Signature of CdSe-ZnS Coreâ^'Shell Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 7007-7013.	1.5	40
112	Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nature Nanotechnology, 2022, 17, 746-751.	15.6	40
113	Rotaxanes with a calix[6]arene wheel and axles of different length. Synthesis, characterization, and photophysical and electrochemical properties. Tetrahedron, 2008, 64, 8279-8286.	1.0	39
114	Inner filter effects and other traps in quantitative spectrofluorimetric measurements: Origins and methods of correction. Journal of Molecular Structure, 2014, 1077, 30-39.	1.8	39
115	Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals. Journal of Materials Chemistry C, 2014, 2, 2877-2886.	2.7	39
116	Improving Fatigue Resistance of Dihydropyrene by Encapsulation within a Coordination Cage. Journal of the American Chemical Society, 2020, 142, 14557-14565.	6.6	39
117	Template-Directed Syntheses, Spectroscopic Properties, and Electrochemical Behavior of [n]Catenanes. European Journal of Organic Chemistry, 2000, 2000, 1121-1130.	1.2	38
118	Artificial molecular-level machines. Chemical Record, 2001, 1, 422-435.	2.9	38
119	Ion-Pairing Effects in the Self-Assembly of a Fluorescent Pseudorotaxane. European Journal of Organic Chemistry, 2006, 2006, 105-112.	1.2	38
120	Diastereoselective Formation and Photophysical Behavior of a Chiral Copper(I) Phenanthroline Complex. Inorganic Chemistry, 1998, 37, 2145-2149.	1.9	35
121	The Electrochemically-Driven Decomplexation/Recomplexation of Inclusion Adducts of Ferrocene Derivatives with an Electron-Accepting Receptorâ€. Journal of Organic Chemistry, 2000, 65, 1947-1956.	1.7	35
122	Cyclohexenylphenyldiazene:Â A Simple Surrogate of the Azobenzene Photochromic Unit. Journal of the American Chemical Society, 2007, 129, 3198-3210.	6.6	35
123	The eternal youth of azobenzene: new photoactive molecular and supramolecular devices. Pure and Applied Chemistry, 2015, 87, 537-545.	0.9	35
124	Lightâ€Responsive (Supra)Molecular Architectures: Recent Advances. Advanced Optical Materials, 2019, 7, 1900392.	3.6	35
125	Ruthenium tris(bipyridine) complexes: Interchange between photons and electrons in molecular-scale devices and machines. Coordination Chemistry Reviews, 2021, 433, 213758.	9.5	35
126	Reactivity of a pyridinium-substituted dimethyldihydropyrene switch under aerobic conditions: self-sensitized photo-oxygenation and thermal release of singlet oxygen. Chemical Communications, 2015, 51, 13886-13889.	2.2	34

#	Article	IF	CITATIONS
127	Design of photo-activated molecular machines: highlights from the past ten years. Chemical Communications, 2019, 55, 12595-12602.	2.2	34
128	Artificial molecular-level machines with[Ru(bpy)3]2+as a "light-fueled motor― International Journal of Photoenergy, 2001, 3, 63-77.	1.4	33
129	Luminescence quenching in supramolecular assemblies of quantum dots and bipyridinium dications. Journal of Materials Chemistry, 2008, 18, 2022.	6.7	32
130	An Artificial Molecular Transporter. ChemistryOpen, 2016, 5, 120-124.	0.9	32
131	Remote electrochemical modulation of pK _a in a rotaxane by co-conformational allostery. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9385-9390.	3.3	32
132	Precision Molecular Threading/Dethreading. Angewandte Chemie - International Edition, 2020, 59, 14825-14834.	7.2	32
133	Light-Operated Machines Based on Threaded Molecular Structures. Topics in Current Chemistry, 2014, 354, 1-34.	4.0	31
134	Supramolecular Photochemistry and Photophysics. Energy- Conversion and Information-Processing Devices based on Transition Metal Complexes. , 1994, , 1-32.		31
135	Effect of Strain on the Photoisomerization and Stability of a Congested Azobenzenophane:Â A Combined Experimental and Computational Study. Journal of Physical Chemistry A, 2006, 110, 12385-12394.	1.1	30
136	Thermodynamic Insights on a Bistable Acid–Base Switchable Molecular Shuttle with Strongly Shifted Co onformational Equilibria. Chemistry - A European Journal, 2017, 23, 2149-2156.	1.7	30
137	Individualâ€Molecule Perspective Analysis of Chemical Reaction Networks: The Case of a Lightâ€Đriven Supramolecular Pump. Angewandte Chemie - International Edition, 2019, 58, 14341-14348.	7.2	30
138	Binary logic operations with artificial molecular machines. Coordination Chemistry Reviews, 2021, 428, 213589.	9.5	30
139	Second-Generation Light-Fueled Supramolecular Pump. Journal of the American Chemical Society, 2021, 143, 10890-10894.	6.6	30
140	Quantum dot–molecule hybrids: a paradigm for light-responsive nanodevices. New Journal of Chemistry, 2012, 36, 1925.	1.4	29
141	Designed Longâ€Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surfaceâ€Bound Chromophore. Angewandte Chemie - International Edition, 2018, 57, 3104-3107.	7.2	29
142	A Molecular Cable Car for Transmembrane Ion Transport. Angewandte Chemie - International Edition, 2019, 58, 4108-4110.	7.2	29
143	Direct synthetic routes to functionalised crown ethers. Organic Chemistry Frontiers, 2021, 8, 5531-5549.	2.3	29
144	Photochemistry of a Dumbbell-Shaped Multicomponent System Hosted Inside the Mesopores of Al/MCM-41 Aluminosilicate. Generation of Long-Lived Viologen Radicals. Journal of Physical Chemistry B, 2003, 107, 14319-14325.	1.2	28

ALBERTO CREDI

#	Article	IF	CITATIONS
145	Einfache molekulare Maschinen: chemisch gesteuertes AusfÄ d eln und RļckeinfÄ d eln eines [2]Pseudorotaxans. Angewandte Chemie, 1996, 108, 1056-1059.	1.6	27
146	Chiroptical Absorption and Luminescence Spectra of a Dissymmetric Osmium(II)â^Polypyridyl Complex Containing an Optically Active Bis(bipyridine)-Type Ligand of Well-Defined Structural Chirality. Inorganic Chemistry, 1997, 36, 426-434.	1.9	27
147	Selfâ€Assembly of Calix[6]arene–Diazapyrenium Pseudorotaxanes: Interplay of Molecular Recognition and Ionâ€Pairing Effects. Chemistry - A European Journal, 2010, 16, 3467-3475.	1.7	27
148	Light-powered, artificial molecular pumps: a minimalistic approach. Beilstein Journal of Nanotechnology, 2015, 6, 2096-2104.	1.5	27
149	Photophysical Properties and Conformational Effects on the Circular Dichroism of an Azobenzene–Cyclodextrin [1]Rotaxane and Its Molecular Components. Chemistry - A European Journal, 2013, 19, 3131-3138.	1.7	26
150	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie - International Edition, 2021, 60, 313-320.	7.2	26
151	Photophysical properties of a dinuclear rack-type Ru(II) complex and of its components. Chemical Physics Letters, 1995, 243, 102-107.	1.2	24
152	Redox properties of CdSe and CdSe–ZnS quantum dots in solution. Pure and Applied Chemistry, 2010, 83, 1-8.	0.9	24
153	Photoactive Molecularâ€Based Devices, Machines and Materials: Recent Advances. European Journal of Inorganic Chemistry, 2018, 2018, 4589-4603.	1.0	24
154	Photodriven [2]rotaxane–[2]catenane interconversion. Chemical Communications, 2015, 51, 2810-2813.	2.2	23
155	Light on Molecular Machines. ChemPhysChem, 2010, 11, 3398-3403.	1.0	22
156	Spectroscopic and Electrochemical Properties of Catenanes Containing the 2,7-Diazapyrenium Unit. Supramolecular Chemistry, 2001, 13, 303-311.	1.5	21
157	Electrochemically Controlled Formation/Dissociation of Phosphonate avitand/Methylpyridinium Complexes. Chemistry - A European Journal, 2008, 14, 8964-8971.	1.7	21
158	Redox Control of Molecular Motion in Switchable Artificial Nanoscale Devices. Antioxidants and Redox Signaling, 2011, 14, 1119-1165.	2.5	21
159	Hybrids of semiconductor quantum dot and molecular species for photoinduced functions. Coordination Chemistry Reviews, 2014, 263-264, 151-160.	9.5	21
160	Photoactive pseudorotaxanes and rotaxanes as artificial molecular machines. Synthetic Metals, 2003, 139, 773-777.	2.1	20
161	Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle. ChemistryOpen, 2015, 4, 18-21.	0.9	20
162	Threading-gated photochromism in [2]pseudorotaxanes. Chemical Science, 2019, 10, 5104-5113.	3.7	20

#	Article	IF	CITATIONS
163	Artificial Supramolecular Pumps Powered by Light. Chemistry - A European Journal, 2021, 27, 11076-11083.	1.7	20
164	Molecular-Level Artificial Machines Based on Photoinduced Electron-Transfer Processes. , 2001, , 163-188.		20
165	Photoredox pathways for the polymerization of a pyrrole-substituted ruthenium tris(bipyridyl) complex. New Journal of Chemistry, 1998, 22, 33-37.	1.4	18
166	Towards molecular photochemionics. International Journal of Photoenergy, 2004, 6, 1-10.	1.4	18
167	Dethreading of a Photoactive Azobenzeneâ€Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation. ChemPhysChem, 2016, 17, 1913-1919.	1.0	17
168	Designed Longâ€Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surfaceâ€Bound Chromophore. Angewandte Chemie, 2018, 130, 3158-3161.	1.6	17
169	Using light to induce energy and electron transfer or molecular motions in multicomponent systems. Photochemical and Photobiological Sciences, 2007, 6, 345.	1.6	16
170	Monolayers with an IQ. Nature Nanotechnology, 2008, 3, 529-530.	15.6	16
171	Tuning Fluorescence Lifetimes through Changes in Herzbergâ^'Teller Activities: The Case of Triphenylene and Its Hexamethoxy-Substituted Derivative. Journal of Physical Chemistry A, 2009, 113, 6504-6510.	1.1	16
172	Synthesis and Characterization of Constitutionally Isomeric Oriented Calix[6]areneâ€Based Rotaxanes. European Journal of Organic Chemistry, 2016, 2016, 1033-1042.	1.2	16
173	Gearing up molecular rotary motors. Science, 2017, 356, 906-907.	6.0	15
174	Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes. Journal of the American Chemical Society, 2021, 143, 8046-8055.	6.6	15
175	Liposome Destabilization by a 2,7â€Diazapyrenium Derivative Through Formation of Transient Pores in the Lipid Bilayer. Small, 2010, 6, 952-959.	5.2	14
176	Photochemical investigation of cyanoazobenzene derivatives as components of artificial supramolecular pumps. Photochemical and Photobiological Sciences, 2018, 17, 734-740.	1.6	14
177	Molecular-Level Devices and Machines. , 2005, , 255-266.		13
178	Rotaxane-based molecular machines operated by photoinduced electron transfer. Pure and Applied Chemistry, 2005, 77, 1051-1057.	0.9	13
179	Hierarchical self-assembly of amphiphilic calix[6]arene wheels and viologen axles in water. Organic and Biomolecular Chemistry, 2013, 11, 5944.	1.5	13
180	Tailoring of quantum dot emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Nanoscale, 2014, 6, 741-744.	2.8	13

#	Article	IF	CITATIONS
181	Incorporation of Calix[6]Arene Macrocycles and (Pseudo)Rotaxanes in Bilayer Membranes: Towards Controllable Artificial Liposomal Channels. Asian Journal of Organic Chemistry, 2015, 4, 262-270.	1.3	13
182	Efficient active-template synthesis of calix[6]arene-based oriented pseudorotaxanes and rotaxanes. Organic and Biomolecular Chemistry, 2017, 15, 6753-6763.	1.5	13
183	Reversible Photoswitching and Isomerâ€Dependent Diffusion of Single Azobenzene Tetramers on a Metal Surface. Angewandte Chemie, 2018, 130, 15254-15259.	1.6	13
184	Heteroditopic Calix[6]arene Based Intervowen and Interlocked Molecular Devices. Chemical Record, 2021, 21, 1161-1181.	2.9	13
185	Photochemical Energy Conversion with Artificial Molecular Machines. Energy & Fuels, 2021, 35, 18900-18914.	2.5	13
186	From supramolecular electrochemistry to molecular-level devices. Electrochimica Acta, 2004, 49, 3865-3872.	2.6	12
187	Molecular machines operated by light. Open Chemistry, 2008, 6, 325-339.	1.0	12
188	The Research Front on Molecular Logic. Australian Journal of Chemistry, 2010, 63, 145.	0.5	12
189	pHâ€Sensitive Bis(2,2′:6′,2"â€terpyridine)ruthenium(II) Complexes – A DFT/TDDFT Investigation of Their Spectroscopic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 1605-1613.	1.0	12
190	A Highly Luminescent Tetramer from a Weakly Emitting Monomer: Acid―and Redoxâ€Controlled Multiple Complexation by Cucurbit[7]uril. Chemistry - A European Journal, 2014, 20, 7054-7060.	1.7	12
191	Covalent capture of oriented calix[6]arene rotaxanes by a metal-free active template approach. Chemical Communications, 2017, 53, 6172-6174.	2.2	12
192	An Efficient Method for the Surface Functionalization of Luminescent Quantum Dots with Lipoic Acid Based Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 5143-5151.	1.0	12
193	Artificial nanomachines based on interlocked molecules. Journal of Physics Condensed Matter, 2006, 18, S1779-S1795.	0.7	11
194	Electroactive [2]catenanes. Electrochimica Acta, 2014, 140, 467-475.	2.6	11
195	Photoinduced electron transfer from [Ru(bpy)3]2+ to a calix[6]arene-encapsulated viologen electron acceptor. Inorganica Chimica Acta, 2014, 417, 258-262.	1.2	11
196	Structural Changes of a Doubly Spin‣abeled Chemically Driven Molecular Shuttle Probed by PELDOR Spectroscopy. Chemistry - A European Journal, 2016, 22, 8745-8750.	1.7	11
197	Interfacing Luminescent Quantum Dots with Functional Molecules for Optical Sensing Applications. Topics in Current Chemistry, 2016, 374, 65.	3.0	11
198	Luminescence quenching in self-assembled adducts of [Ru(dpp)3]2+ complexes and CdTe nanocrystals. Dalton Transactions, 2011, 40, 12083.	1.6	10

#	Article	IF	CITATIONS
199	Photosensitization of the luminescence of CdTe nanocrystals by noncovalently bound Zn tetraphenylporphyrin. Inorganica Chimica Acta, 2012, 381, 247-250.	1.2	10
200	Photochemically Controlled Molecular Machines with Sequential Logic Operation. Israel Journal of Chemistry, 2014, 54, 553-567.	1.0	10
201	Calixarene Threading by Viologen-Based Axles. , 2016, , 761-781.		10
202	New Geometries for Calix[6]areneâ€Based Rotaxanes. European Journal of Organic Chemistry, 2019, 2019, 3513-3524.	1.2	10
203	Photoinduced Electron Transfer Involving a Naphthalimide Chromophore in Switchable and Flexible [2]Rotaxanes. Chemistry - A European Journal, 2020, 26, 534-542.	1.7	10
204	Synthesis and properties of a redox-switchable calix[6]arene-based molecular lasso. Organic Chemistry Frontiers, 2020, 7, 648-659.	2.3	10
205	Precision Molecular Threading/Dethreading. Angewandte Chemie, 2020, 132, 14935-14944.	1.6	10
206	Processing Chemical and Photonic Signals by Artificial Multicomponent Molecular Systems. Israel Journal of Chemistry, 2011, 51, 23-35.	1.0	9
207	Synthesis by ring closing metathesis and properties of an electroactive calix[6]arene [2]catenane. Supramolecular Chemistry, 2016, 28, 427-435.	1.5	9
208	Electrochemically Triggered Co-Conformational Switching in a [2]catenane Comprising a Non-Symmetric Calix[6]arene Wheel and a Two-Station Oriented Macrocycle. Molecules, 2018, 23, 1156.	1.7	9
209	Stereodynamics of E/Z isomerization in rotaxanes through mechanical shuttling and covalent bond rotation. CheM, 2021, 7, 2137-2150.	5.8	9
210	Photoluminescence Enhancement of CdSe and CdSe–ZnS Nanocrystals by On‧urface Ligand Modification. European Journal of Inorganic Chemistry, 2013, 2013, 3550-3556.	1.0	8
211	Semiconductor Quantum Dots as Components of Photoactive Supramolecular Architectures. ChemistryOpen, 2020, 9, 200-213.	0.9	8
212	Modelization and Simulation of Nano Devices in nano \hat{I}^{o} Calculus. Lecture Notes in Computer Science, 2007, , 168-183.	1.0	8
213	Photochemistry of supramolecular systems and nanostructured assemblies. In memory of Professor Nick Turro (1938–2012). Chemical Society Reviews, 2014, 43, 4003.	18.7	7
214	Modulation of the solubility of luminescent semiconductor nanocrystals through facile surface functionalization. Chemical Communications, 2014, 50, 11020-11022.	2.2	7
215	Eine molekulare Seilbahn für den transmembranÃ r en Ionentransport. Angewandte Chemie, 2019, 131, 4152-4155.	1.6	7
216	Selective access to constitutionally identical, orientationally isomeric calix[6]arene-based [3]rotaxanes by an active template approach. Chemical Science, 2021, 12, 6419-6428.	3.7	7

ALBERTO CREDI

#	Article	IF	CITATIONS
217	Photoinduced Autonomous Nonequilibrium Operation of a Molecular Shuttle by Combined Isomerization and Proton Transfer Through a Catalytic Pathway. Journal of the American Chemical Society, 2022, 144, 10180-10185.	6.6	7
218	Light-Driven Directed Proton Transport across the Liposomal Membrane. Langmuir, 2014, 30, 13667-13672.	1.6	6
219	Ultrafast processes triggered by one- and two-photon excitation of a photochromic and luminescent hydrazone. Beilstein Journal of Organic Chemistry, 2019, 15, 2438-2446.	1.3	6
220	Space Charge Behavior of Quantum Dot-Doped Polystyrene Polymers. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28, 753-761.	1.8	6
221	Artificial molecular machines driven by light. Frontiers in Bioscience - Landmark, 2008, 13, 1036.	3.0	6
222	Effect of Protons on CdSe and CdSe–ZnS Nanocrystals in Organic Solution. Langmuir, 2013, 29, 13352-13358.	1.6	5
223	Synthesis and photochemical behaviour of novel uranyl–salophen complexes bearing anthracenyl side arms. Supramolecular Chemistry, 2013, 25, 109-115.	1.5	5
224	Blueâ€Lightâ€Emitting Triazolopyridinium and Triazoloquinolinium Salts. ChemPhotoChem, 2017, 1, 222-229.	1.5	5
225	EPR sensing of metal and organic cations using a novel spin-labelled dibenzo-24-crown-8-ether. Physical Chemistry Chemical Physics, 2019, 21, 3558-3563.	1.3	5
226	Artificial Molecular Machines Powered by Light. Chimia, 2008, 62, 204.	0.3	4
227	Plugging a Bipyridinium Axle into Multichromophoric Calix[6]arene Wheels Bearing Naphthyl Units at Different Rims. ChemistryOpen, 2017, 6, 64-72.	0.9	4
228	Unconventional Nonlinear Input–Output Response in a Luminescent Molecular Switch by Inner Filtering Effects. ChemPhysChem, 2017, 18, 1755-1759.	1.0	4
229	Individualâ€Molecule Perspective Analysis of Chemical Reaction Networks: The Case of a Lightâ€Driven Supramolecular Pump. Angewandte Chemie, 2019, 131, 14479-14486.	1.6	4
230	4,4′-Dimethylazobenzene as a chemical actinometer. Photochemical and Photobiological Sciences, 2022, , 1.	1.6	4
231	Supramolecular assemblies of semiconductor quantum dots and a bis(bipyridinium) derivative: luminescence quenching and aggregation phenomena. RSC Advances, 2014, 4, 29847-29854.	1.7	3
232	Solution and solid state photochromism in a family of shape persistent azobenzene tetramers functionalized with alkyloxy substituents. Photochemical and Photobiological Sciences, 2019, 18, 2281-2286.	1.6	3
233	Thioureidocalix[6]arenes Pseudorotaxanes. European Journal of Organic Chemistry, 2021, 2021, 5788-5798.	1.2	3
234	Hierarchical self-assembly and controlled disassembly of a cavitand-based host–guest supramolecular polymer. Polymer Chemistry, 2021, 12, 389-401.	1.9	3

#	Article	IF	CITATIONS
235	Quantum Dots Functionalized with Photo- or Redox-Active Species for Luminescence Sensing and Switching. Current Physical Chemistry, 2011, 1, 181-194.	0.1	3
236	Multimodal sensing in rewritable, data matrix azobenzene-based devices. Journal of Materials Chemistry C, 2022, 10, 10132-10138.	2.7	3
237	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie, 2021, 133, 317-324.	1.6	2
238	Molecular Motors and Machines. Fundamental Biomedical Technologies, 2012, , 71-100.	0.2	2
239	Supramolecular Photochemistry: Recent Advances. , 1996, , 163-177.		2
240	The Bottom-Up Approach to Molecular-Level Devices and Machines. ChemInform, 2003, 34, no.	0.1	1
241	Innenrücktitelbild: Reversible Photoswitching and Isomerâ€Dependent Diffusion of Single Azobenzene Tetramers on a Metal Surface (Angew. Chem. 46/2018). Angewandte Chemie, 2018, 130, 15505-15505.	1.6	1
242	Molecular‣evel Machines. , 2004, , 931-938.		0
243	Rotaxane-Based Molecular Machines Operated by Photoinduced Electron Transfer. ChemInform, 2005, 36, no.	0.1	0
244	Artificial Molecular Devices and Machines Driven by Light. AIP Conference Proceedings, 2007, , .	0.3	0
245	Introducing the Research Front on Photoactive and Electroactive Dendrimers. Australian Journal of Chemistry, 2011, 64, 127.	0.5	0
246	Spectrofluorimetry. Lecture Notes in Quantum Chemistry II, 2012, , 97-129.	0.3	0
247	Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle. ChemistryOpen, 2015, 4, 2-2.	0.9	0
248	Unconventional Nonlinear Input-Output Response in a Luminescent Molecular Switch by Inner Filtering Effects. ChemPhysChem, 2017, 18, 1664-1664.	1.0	0
249	Photoactive Molecular-Based Devices, Machines and Materials: Recent Advances. European Journal of Inorganic Chemistry, 2018, 2018, 4587-4587.	1.0	0
250	Light on Molecular Devices. ChemPhotoChem, 2019, 3, 578-579.	1.5	0
251	Manufacturing at nanoscale. , 2020, , 41-63.		0
252	Artificial Supramolecular Pumps Powered by Light. Chemistry - A European Journal, 2021, 27, 11019-11020.	1.7	0

#	Article	IF	CITATIONS
253	Absorption and Emission Spectroscopy with Polarized Light. Lecture Notes in Quantum Chemistry II, 2012, , 131-165.	0.3	0